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Define U, = {x : z € Z,\{0}} and V,, = {2? : © € Z,\ {0}}. Then U, is a multiplicative
group, as we have seen earlier in the course. We define the map ¢ : U, — V, by
putting p(z) = z% This defines a group homomorphism (again, we have seen this
earlier in the course) which is evidently surjective. Using the field property of Z,,
we find that ker(p) = {z € U, : 2* = 1} = {+1,—1}. To see this, observe that if
z? = 1, then (z + 1)(x — 1) = 0, so the integral domain property of Z, shows that
r+1=0o0rxz—1=0. We thus deduce from the First Homomorphism Theorem that
V, =2 Uy /ker(p) = U,/{+1,—1}. Then V, is a subgroup of U, of order |U,|/2 = (p—1)/2.
Thus V), is a normal subgroup of U, with two cosets V), and aV),, for some a € U,. Since
no element of aV, lies in V,,, none of these elements are quadratic residues modulo p,
and we have |aV,| = |V,| = (p — 1)/2 quadratic non-residues modulo p. The remaining
elements of U, lie in V,, and are quadratic residues modulo p, the number of which is

Vol = (p—1)/2.

The set R is a subset of the ring of real numbers. Thus, to show that R is a ring, it
suffices to check that it is a subring of R. Plainly 0 € R, so R is nonempty. Also, if
a;, bl €7 (Z = 1,2), then (a1 -+ \/mbl) + (GQ + \/ﬁbg) = (a1 + ag) + m(bl + bg) € R,
and also (a; + v/mbi)(az + /mbs) = (ajas + mbiby) + v/m(aibs + azby) € R, so R does
indeed form a subring of R, and is hence a ring.

We have that 0 € I,, so I, is not empty. Also, whenever a;,b; are integers divisible
by p for i = 1,2, say a; = pc; and b; = pd;, then (a; + /mby) £ (ay + /mbsy) =
pler £ ) + /mp(dy £ dy) € 1, so that I, forms an additive subgroup of R. Moreover,
whenever u,v € Z, we have (u + /mv)(a; + v/mby) = (u + /mv)(pe1 + /mpd,) =
p(ucy +mudy) + /mp(udy +vey) € I,. Thus, since I, is commutative, it follows that I,
is an ideal of R.

Consider the quotient ring R/I,. This consists of the cosets u-++/mv+I,, with 0 < u,v <
p. This is a commutative ring with unit 1+ I,. Suppose now that oo = u + /mv + I #
I, so that u 4+ y/mv + I is not the zero element in R/I,. We claim that « has a
multiplicative inverse in R/I,, so that R/I, is a division ring and hence a field. To
see this, observe that when m is a quadratic non-residue modulo p, and v is non-zero
in Z,, one has u?* — mv? = v*((uv™)? — m), and so u* — mov? is divisible by p if and
only if u and v are both divisible by p. When u and v are not both divisible by p,
therefore, the integer u? — mv? has a multiplicative inverse modulo p, say w. We now
have (w(u — v/mv) + INa = w(u — /mv)(u + vVmv) + I = w(u? —mv?) + I =1+1,
so that w(u — /mwv) + I is a multiplicative inverse of . It follows that R/I, is a field,
and hence that I, is a maximal ideal (Theorem 4.4.3).

Since I, is a maximal ideal of R, it follows that R/, is a field. Moreover, when a;,b; € Z,
one has a; + /mby + I, = as + /mby + I, if and only if (ay — a2) + /m(by — b2) € I,
But when ¢,d € Z, if one has ¢ + /md € I,, then ¢ + v/md = u + \/mv for some
u,v € Z with p|lu and plv. Thus (¢ — u)? = m(v — d)?, which shows that u? = muv?
(mod p). This is possible when m is a quadratic non-residue only when plu and p|v.
Hence a; = ay (mod p) and by = by (mod p). Then the distinct cosets of [, in R are

given by a + v/mb + I,, with 0 < a,b < p, and thus the field R/I, has p* elements.
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(a) By using the division algorithm, we obtain
2* — 62 + 7= (2% — 4z + 10)(x + 4) — 33,
so the greatest common divisor of 2® — 6x + 7 and z + 4 divides 33 and hence is 1.
(b) Likewise,
227 —42° + 2 = (22° — 2% — 22)(2® — 1) — 22 + 2,
and

11
2—1:(—— —) -2z — 2
x 2:c+2( r—2)+0,

so the greatest common divisor of 227 — 42 + 2 and 22 — 1 divides 2z — 2 and hence is
r— 1.
(c) Similarly,

1 2 2 29
6, 4 1= (_ 4, % 2 1
4 at+a+ 3% T g% - 27)(33: + )+;E—|—27
and 29 20\ 1084
w1 e 2o )
x° + x 9 :c—|—27 + 943
so the greatest common divisor of % + z* + 2 + 1 and 322 4 1 divides %834 and hence is
1.

(d) Finally,

o2t —1= (2t D)2 - 1),
so the greatest common divisor of 7 — 2% + 23 — 1 and 23 — 1 divides 2* — 1 and hence
is 3 — 1.

In all cases we find that d(z) = (a(x), b(z)) divides any element of I, so that I C (d(z)).
Moreover, since there exist f, [z] such that d(z) = a(z)f(z) + b(z)g(x), we see
that (d(x )) CI. Thus I =d(z (a(x) b(z)).

(a) We have d(x) = (a(z), b(x)
(b) We have d(z) = (a(x), b(x)
(c¢) We have d(z) = (a(z), b(x)

(d) We have d(z) = (a(z), (x))—x — 1.

If f(z) and g(x) are relatively prime in F[z], then (Theorem 4.5.7) there are polynomials
a(z),b(x) € Flz] for which af 4+ bg = 1. Since F C K, this last relation holds also in
K|z], and thus any common divisor d € K[z] of f and g must divide 1. It follows that
the greatest common divisor of f and ¢ in K[z] is a monic constant polynomial, namely
1, and hence f and g are also relatively prime in K{z].
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Suppose that all irreducible polynomials in F'[x] have degree bounded by N. Since F
is finite, this implies that there are just finitely many irreducible polynomials, and we
may label these pq,...,p, for some natural number n. Now consider the polynomial
P(z) = p1(x)p2(x) - - - pu(x) + 1. We see that (P(z),p;(z)) = 1 for each i, so that P(x)
is not divisible by any irreducible polynomial. But Theorem 4.5.12 shows that P(z)
is either irreducible, or the product of irreducible polynomials. Then P(x) must be
irreducible, yet is not one of the (exhaustive) list of irreducible polynomials in F'[z]. This
yields a contradiction which forces us to conclude that there are irreducible polynomials
of arbitrarily large degree.



