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4.4, Q9. Define Up = {x : x ∈ Zp \{0}} and Vp = {x2 : x ∈ Zp \{0}}. Then Up is a multiplicative
group, as we have seen earlier in the course. We define the map ϕ : Up → Vp by
putting ϕ(x) = x2. This defines a group homomorphism (again, we have seen this
earlier in the course) which is evidently surjective. Using the field property of Zp,
we find that ker(ϕ) = {x ∈ Up : x2 = 1} = {+1,−1}. To see this, observe that if
x2 = 1, then (x + 1)(x − 1) = 0, so the integral domain property of Zp shows that
x + 1 = 0 or x− 1 = 0. We thus deduce from the First Homomorphism Theorem that
Vp ∼= Up/ker(ϕ) = Up/{+1,−1}. Then Vp is a subgroup of Up of order |Up|/2 = (p−1)/2.
Thus Vp is a normal subgroup of Up with two cosets Vp and aVp, for some a ∈ Up. Since
no element of aVp lies in Vp, none of these elements are quadratic residues modulo p,
and we have |aVp| = |Vp| = (p− 1)/2 quadratic non-residues modulo p. The remaining
elements of Up lie in Vp and are quadratic residues modulo p, the number of which is
|Vp| = (p− 1)/2.

4.4, Q10. The set R is a subset of the ring of real numbers. Thus, to show that R is a ring, it
suffices to check that it is a subring of R. Plainly 0 ∈ R, so R is nonempty. Also, if
ai, bi ∈ Z (i = 1, 2), then (a1 +

√
mb1) ± (a2 +

√
mb2) = (a1 ± a2) +

√
m(b1 ± b2) ∈ R,

and also (a1 +
√
mb1)(a2 +

√
mb2) = (a1a2 +mb1b2) +

√
m(a1b2 + a2b1) ∈ R, so R does

indeed form a subring of R, and is hence a ring.

4.4, Q11. We have that 0 ∈ Ip, so Ip is not empty. Also, whenever ai, bi are integers divisible
by p for i = 1, 2, say ai = pci and bi = pdi, then (a1 +

√
mb1) ± (a2 +

√
mb2) =

p(c1 ± c2) +
√
mp(d1 ± d2) ∈ Ip, so that Ip forms an additive subgroup of R. Moreover,

whenever u, v ∈ Z, we have (u +
√
mv)(a1 +

√
mb1) = (u +

√
mv)(pc1 +

√
mpd1) =

p(uc1 +mvd1) +
√
mp(ud1 + vc1) ∈ Ip. Thus, since Ip is commutative, it follows that Ip

is an ideal of R.

4.4, Q12. Consider the quotient ring R/Ip. This consists of the cosets u+
√
mv+Ip, with 0 ≤ u, v <

p. This is a commutative ring with unit 1 + Ip. Suppose now that α = u+
√
mv + I 6=

I, so that u +
√
mv + I is not the zero element in R/Ip. We claim that α has a

multiplicative inverse in R/Ip, so that R/Ip is a division ring and hence a field. To
see this, observe that when m is a quadratic non-residue modulo p, and v is non-zero
in Zp, one has u2 − mv2 = v2((uv−1)2 − m), and so u2 − mv2 is divisible by p if and
only if u and v are both divisible by p. When u and v are not both divisible by p,
therefore, the integer u2 −mv2 has a multiplicative inverse modulo p, say w. We now
have (w(u −

√
mv) + I)α = w(u −

√
mv)(u +

√
mv) + I = w(u2 −mv2) + I = 1 + I,

so that w(u−
√
mv) + I is a multiplicative inverse of α. It follows that R/Ip is a field,

and hence that Ip is a maximal ideal (Theorem 4.4.3).

4.4, Q13. Since Ip is a maximal ideal of R, it follows that R/Ip is a field. Moreover, when ai, bi ∈ Z,
one has a1 +

√
mb1 + Ip = a2 +

√
mb2 + Ip if and only if (a1 − a2) +

√
m(b1 − b2) ∈ Ip.

But when c, d ∈ Z, if one has c +
√
md ∈ Ip, then c +

√
md = u +

√
mv for some

u, v ∈ Z with p|u and p|v. Thus (c − u)2 = m(v − d)2, which shows that u2 ≡ mv2

(mod p). This is possible when m is a quadratic non-residue only when p|u and p|v.
Hence a1 ≡ a2 (mod p) and b1 ≡ b2 (mod p). Then the distinct cosets of Ip in R are
given by a+

√
mb+ Ip, with 0 ≤ a, b < p, and thus the field R/Ip has p2 elements.
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4.5, Q3. (a) By using the division algorithm, we obtain

x3 − 6x+ 7 = (x2 − 4x+ 10)(x+ 4)− 33,

so the greatest common divisor of x3 − 6x+ 7 and x+ 4 divides 33 and hence is 1.
(b) Likewise,

2x7 − 4x5 + 2 = (2x5 − 2x3 − 2x)(x2 − 1)− 2x+ 2,

and

x2 − 1 =
(
−1

2
x+

1

2

)
(−2x− 2) + 0,

so the greatest common divisor of 2x7 − 4x5 + 2 and x2 − 1 divides 2x− 2 and hence is
x− 1.
(c) Similarly,

x6 + x4 + x+ 1 =
(1

3
x4 +

2

9
x2 − 2

27
)(3x2 + 1) + x+

29

27
,

and

3x2 + 1 =
(

3x− 29

9

)(
x+

29

27

)
+

1084

243
,

so the greatest common divisor of x6 + x4 + x+ 1 and 3x2 + 1 divides 1084
243

and hence is
1.
(d) Finally,

x7 − x4 + x3 − 1 = (x4 + 1)(x3 − 1),

so the greatest common divisor of x7 − x4 + x3 − 1 and x3 − 1 divides x3 − 1 and hence
is x3 − 1.

4.5, Q5. In all cases we find that d(x) = (a(x), b(x)) divides any element of I, so that I ⊆ (d(x)).
Moreover, since there exist f, g ∈ Q[x] such that d(x) = a(x)f(x) + b(x)g(x), we see
that (d(x)) ⊆ I. Thus I = d(x) = (a(x), b(x)).
(a) We have d(x) = (a(x), b(x)) = 1.
(b) We have d(x) = (a(x), b(x)) = x− 1.
(c) We have d(x) = (a(x), b(x)) = 1.
(d) We have d(x) = (a(x), b(x)) = x3 − 1.

4.5, Q12. If f(x) and g(x) are relatively prime in F [x], then (Theorem 4.5.7) there are polynomials
a(x), b(x) ∈ F [x] for which af + bg = 1. Since F ⊆ K, this last relation holds also in
K[x], and thus any common divisor d ∈ K[x] of f and g must divide 1. It follows that
the greatest common divisor of f and g in K[x] is a monic constant polynomial, namely
1, and hence f and g are also relatively prime in K[x].

4.5, Q18. Suppose that all irreducible polynomials in F [x] have degree bounded by N . Since F
is finite, this implies that there are just finitely many irreducible polynomials, and we
may label these p1, . . . , pn for some natural number n. Now consider the polynomial
P (x) = p1(x)p2(x) · · · pn(x) + 1. We see that (P (x), pi(x)) = 1 for each i, so that P (x)
is not divisible by any irreducible polynomial. But Theorem 4.5.12 shows that P (x)
is either irreducible, or the product of irreducible polynomials. Then P (x) must be
irreducible, yet is not one of the (exhaustive) list of irreducible polynomials in F [x]. This
yields a contradiction which forces us to conclude that there are irreducible polynomials
of arbitrarily large degree.


