HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 12

4.4, Q9. Define $U_{p}=\left\{x: x \in \mathbb{Z}_{p} \backslash\{0\}\right\}$ and $V_{p}=\left\{x^{2}: x \in \mathbb{Z}_{p} \backslash\{0\}\right\}$. Then U_{p} is a multiplicative group, as we have seen earlier in the course. We define the map $\varphi: U_{p} \rightarrow V_{p}$ by putting $\varphi(x)=x^{2}$. This defines a group homomorphism (again, we have seen this earlier in the course) which is evidently surjective. Using the field property of \mathbb{Z}_{p}, we find that $\operatorname{ker}(\varphi)=\left\{x \in U_{p}: x^{2}=1\right\}=\{+1,-1\}$. To see this, observe that if $x^{2}=1$, then $(x+1)(x-1)=0$, so the integral domain property of \mathbb{Z}_{p} shows that $x+1=0$ or $x-1=0$. We thus deduce from the First Homomorphism Theorem that $V_{p} \cong U_{p} / \operatorname{ker}(\varphi)=U_{p} /\{+1,-1\}$. Then V_{p} is a subgroup of U_{p} of order $\left|U_{p}\right| / 2=(p-1) / 2$. Thus V_{p} is a normal subgroup of U_{p} with two cosets V_{p} and $a V_{p}$, for some $a \in U_{p}$. Since no element of $a V_{p}$ lies in V_{p}, none of these elements are quadratic residues modulo p, and we have $\left|a V_{p}\right|=\left|V_{p}\right|=(p-1) / 2$ quadratic non-residues modulo p. The remaining elements of U_{p} lie in V_{p} and are quadratic residues modulo p, the number of which is $\left|V_{p}\right|=(p-1) / 2$.
4.4, Q10. The set R is a subset of the ring of real numbers. Thus, to show that R is a ring, it suffices to check that it is a subring of \mathbb{R}. Plainly $0 \in R$, so R is nonempty. Also, if $a_{i}, b_{i} \in \mathbb{Z}(i=1,2)$, then $\left(a_{1}+\sqrt{m} b_{1}\right) \pm\left(a_{2}+\sqrt{m} b_{2}\right)=\left(a_{1} \pm a_{2}\right)+\sqrt{m}\left(b_{1} \pm b_{2}\right) \in R$, and also $\left(a_{1}+\sqrt{m} b_{1}\right)\left(a_{2}+\sqrt{m} b_{2}\right)=\left(a_{1} a_{2}+m b_{1} b_{2}\right)+\sqrt{m}\left(a_{1} b_{2}+a_{2} b_{1}\right) \in R$, so R does indeed form a subring of \mathbb{R}, and is hence a ring.
4.4, Q11. We have that $0 \in I_{p}$, so I_{p} is not empty. Also, whenever a_{i}, b_{i} are integers divisible by p for $i=1,2$, say $a_{i}=p c_{i}$ and $b_{i}=p d_{i}$, then $\left(a_{1}+\sqrt{m} b_{1}\right) \pm\left(a_{2}+\sqrt{m} b_{2}\right)=$ $p\left(c_{1} \pm c_{2}\right)+\sqrt{m} p\left(d_{1} \pm d_{2}\right) \in I_{p}$, so that I_{p} forms an additive subgroup of R. Moreover, whenever $u, v \in \mathbb{Z}$, we have $(u+\sqrt{m} v)\left(a_{1}+\sqrt{m} b_{1}\right)=(u+\sqrt{m} v)\left(p c_{1}+\sqrt{m} p d_{1}\right)=$ $p\left(u c_{1}+m v d_{1}\right)+\sqrt{m} p\left(u d_{1}+v c_{1}\right) \in I_{p}$. Thus, since I_{p} is commutative, it follows that I_{p} is an ideal of R.
4.4, Q12. Consider the quotient ring R / I_{p}. This consists of the cosets $u+\sqrt{m} v+I_{p}$, with $0 \leq u, v<$ p. This is a commutative ring with unit $1+I_{p}$. Suppose now that $\alpha=u+\sqrt{m} v+I \neq$ I, so that $u+\sqrt{m} v+I$ is not the zero element in R / I_{p}. We claim that α has a multiplicative inverse in R / I_{p}, so that R / I_{p} is a division ring and hence a field. To see this, observe that when m is a quadratic non-residue modulo p, and v is non-zero in \mathbb{Z}_{p}, one has $u^{2}-m v^{2}=v^{2}\left(\left(u v^{-1}\right)^{2}-m\right)$, and so $u^{2}-m v^{2}$ is divisible by p if and only if u and v are both divisible by p. When u and v are not both divisible by p, therefore, the integer $u^{2}-m v^{2}$ has a multiplicative inverse modulo p, say w. We now have $(w(u-\sqrt{m} v)+I) \alpha=w(u-\sqrt{m} v)(u+\sqrt{m} v)+I=w\left(u^{2}-m v^{2}\right)+I=1+I$, so that $w(u-\sqrt{m} v)+I$ is a multiplicative inverse of α. It follows that R / I_{p} is a field, and hence that I_{p} is a maximal ideal (Theorem 4.4.3).
4.4, Q13. Since I_{p} is a maximal ideal of R, it follows that R / I_{p} is a field. Moreover, when $a_{i}, b_{i} \in \mathbb{Z}$, one has $a_{1}+\sqrt{m} b_{1}+I_{p}=a_{2}+\sqrt{m} b_{2}+I_{p}$ if and only if $\left(a_{1}-a_{2}\right)+\sqrt{m}\left(b_{1}-b_{2}\right) \in I_{p}$. But when $c, d \in \mathbb{Z}$, if one has $c+\sqrt{m} d \in I_{p}$, then $c+\sqrt{m} d=u+\sqrt{m} v$ for some $u, v \in \mathbb{Z}$ with $p \mid u$ and $p \mid v$. Thus $(c-u)^{2}=m(v-d)^{2}$, which shows that $u^{2} \equiv m v^{2}$ $(\bmod p)$. This is possible when m is a quadratic non-residue only when $p \mid u$ and $p \mid v$. Hence $a_{1} \equiv a_{2}(\bmod p)$ and $b_{1} \equiv b_{2}(\bmod p)$. Then the distinct cosets of I_{p} in R are given by $a+\sqrt{m} b+I_{p}$, with $0 \leq a, b<p$, and thus the field R / I_{p} has p^{2} elements.
4.5, Q3. (a) By using the division algorithm, we obtain

$$
x^{3}-6 x+7=\left(x^{2}-4 x+10\right)(x+4)-33,
$$

so the greatest common divisor of $x^{3}-6 x+7$ and $x+4$ divides 33 and hence is 1 . (b) Likewise,

$$
2 x^{7}-4 x^{5}+2=\left(2 x^{5}-2 x^{3}-2 x\right)\left(x^{2}-1\right)-2 x+2
$$

and

$$
x^{2}-1=\left(-\frac{1}{2} x+\frac{1}{2}\right)(-2 x-2)+0
$$

so the greatest common divisor of $2 x^{7}-4 x^{5}+2$ and $x^{2}-1$ divides $2 x-2$ and hence is $x-1$.
(c) Similarly,

$$
x^{6}+x^{4}+x+1=\left(\frac{1}{3} x^{4}+\frac{2}{9} x^{2}-\frac{2}{27}\right)\left(3 x^{2}+1\right)+x+\frac{29}{27},
$$

and

$$
3 x^{2}+1=\left(3 x-\frac{29}{9}\right)\left(x+\frac{29}{27}\right)+\frac{1084}{243}
$$

so the greatest common divisor of $x^{6}+x^{4}+x+1$ and $3 x^{2}+1$ divides $\frac{1084}{243}$ and hence is 1.
(d) Finally,

$$
x^{7}-x^{4}+x^{3}-1=\left(x^{4}+1\right)\left(x^{3}-1\right),
$$

so the greatest common divisor of $x^{7}-x^{4}+x^{3}-1$ and $x^{3}-1$ divides $x^{3}-1$ and hence is $x^{3}-1$.
4.5, Q5. In all cases we find that $d(x)=(a(x), b(x))$ divides any element of I, so that $I \subseteq(d(x))$. Moreover, since there exist $f, g \in \mathbb{Q}[x]$ such that $d(x)=a(x) f(x)+b(x) g(x)$, we see that $(d(x)) \subseteq I$. Thus $I=d(x)=(a(x), b(x))$.
(a) We have $d(x)=(a(x), b(x))=1$.
(b) We have $d(x)=(a(x), b(x))=x-1$.
(c) We have $d(x)=(a(x), b(x))=1$.
(d) We have $d(x)=(a(x), b(x))=x^{3}-1$.
4.5, Q12. If $f(x)$ and $g(x)$ are relatively prime in $F[x]$, then (Theorem 4.5.7) there are polynomials $a(x), b(x) \in F[x]$ for which $a f+b g=1$. Since $F \subseteq K$, this last relation holds also in $K[x]$, and thus any common divisor $d \in K[x]$ of f and g must divide 1 . It follows that the greatest common divisor of f and g in $K[x]$ is a monic constant polynomial, namely 1 , and hence f and g are also relatively prime in $K[x]$.
4.5, Q18. Suppose that all irreducible polynomials in $F[x]$ have degree bounded by N. Since F is finite, this implies that there are just finitely many irreducible polynomials, and we may label these p_{1}, \ldots, p_{n} for some natural number n. Now consider the polynomial $P(x)=p_{1}(x) p_{2}(x) \cdots p_{n}(x)+1$. We see that $\left(P(x), p_{i}(x)\right)=1$ for each i, so that $P(x)$ is not divisible by any irreducible polynomial. But Theorem 4.5 .12 shows that $P(x)$ is either irreducible, or the product of irreducible polynomials. Then $P(x)$ must be irreducible, yet is not one of the (exhaustive) list of irreducible polynomials in $F[x]$. This yields a contradiction which forces us to conclude that there are irreducible polynomials of arbitrarily large degree.

