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(a) It is tempting here to start discussing roots of polynomials, but this idea is currently
beyond the scope of the course. However, if 22 + 7 were not irreducible over R, then we
would have 22 + 7 = (z + a)(z + b) for some a,b € R. Thus 2%+ (a + b)z + ab = 2* + 7,
which shows that a +b = 0 and ab = 7, whence a? = b?> = —7. However, for all a € R,
we have a? > 0, so this leads to a contradiction. Hence 22 + 7 is irreducible over R.
(b) The polynomial 2®—3z+3 € Z[z] has lead coefficient not divisible by 3, all remaining
coefficients divisible by 3, and constant coefficient not divisible by 32. Since 3 is prime,
it therefore follows from Eisenstein’s criterion that 2% — 3z + 3 is irreducible over Z, and
then Gauss’ Lemma shows that this polynomial remains irreducible over Q.

(c) If 22 + 2 + 1 were not irreducible over Zy, then we would have 2> +z + 1 € (x — a)
for some a € Z,, whence a® 4+ a + 1 = 0. But a® + a = 0, and so there is no such value
of a, leading to a contradiction. Hence 2? + x + 1 is irreducible over Zs.

(d) If 2% + 1 were not reducible over Z;9, then we would have 2? + 1 € (z — a) for
some a € Zig, whence a? 4+ 1 = 0. But then a # 0, and it follows from Fermat’s Little
Theorem that one then has 1 = a'® = (—1)? = —1, which is impossible. We therefore
conclude that there is no such value of a, and hence z? + 1 is irreducible over Z;s.

(e) If 23 — 9 were not reducible over Z;3, then we would have 23 —9 € (x — a) for some
a € Zy3, whence a®—9 = 0. But then a # 0, and it follows from Fermat’s Little Theorem
that 1 = a'?2 = 9* = 4* = 256 = —4, which is impossible. We therefore conclude that
there is no such value of @, and hence 23 — 9 is irreducible over Z;5.

(f) The polynomial z* + 222 + 2 € Z[x] has lead coefficient not divisible by 2, all
remaining coefficients divisible by 2, and constant coefficient not divisible by 22. Since
2 is prime, it therefore follows from Eisenstein’s criterion that z# + 222 + 2 is irreducible
over Z, and then Gauss’ Lemma shows that this polynomial remains irreducible over Q.

By Gauss’ Lemma, the polynomial 3 + 3x + 2 is irreducible in Q] if and only if it is
irreducible in Z[x]. The latter holds if and only if (z+1)3+3(x+1)+2 = 23+32%+62+3
is irreducible over Z[z]. The latter polynomial has lead coefficient not divisible by 3, all
remaining coefficients divisible by 3, and constant coefficient not divisible by 32. Since
3 is prime, it therefore follows from Eisenstein’s criterion that 2% + 322 + 62 + 3, and
hence also x3 + 3z + 2, is irreducible in Z[z], and also in Q[z].

Take a = 3k, where k is any integer with (k,3) = 1. Then the polynomial 27 + 15z% —
30z + a has lead coefficient not divisible by 3, all remaining coefficients divisible by 3,
and constant coefficient not divisible by 32. Since 3 is prime, it follows from Eisenstein’s
criterion that z” + 152% — 30z + a is irreducible in Z[z], and by Gauss’ Lemma this
polynomial is therefore also irreducible in Q[z]. There are infinitely many such values
of a, and this is what we were asked to establish.

Suppose that f(z) is not irreducible in F[z], but factors as f(x) = u(x)v(z) with u,v €
F[z] and deg(u) > deg(v) > 1, as we may suppose. Then since ¢ is a homomorphism,
we have g(z) = o(f(z)) = ¢(u(z))p(v(x)). Notice that deg(yp(u(x))) > 1, for otherwise
we have p(u(x)) € F, say p(u(z)) = a € F, and then the bijective property of the
automorphism ¢ ensures that u(z) = ¢~ '(a) = a € F, contradicting the hypothesis

that deg(u(x)) > 1. Similarly, we have deg(¢(v(x))) > 1, and thus g(z) = ¢(f(z)) is
1
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not irreducible. On the other hand, if g(z) is not irreducible in F[z], then we may argue
similarly using ¢! in place of ¢, deducing that f(z) = ¢ !(g(x)) is not irreducible.
Then f(x) is irreducible if and only if g(z) is irreducible, as required.

Suppose that ¢ : F[z] — F[z] is an automorphism satisfying the property that p(a) = a
for all @ € F. Then given a polynomial f(z) = ap,z™ + ... + a1z + ap with a; € F
for each i, it follows from the homomorphism properties of ¢ that we have ¢(f) =
olapn)p(x) + ...+ pla)e(x) + p(ag) = ang(x)” + ... + a19(z) + ag, where we write
g(x) = ¢(x) € Flz]. We may suppose without loss of generality that a, # 0, and
thus we deduce that deg(p(f)) = deg(g(x)) - deg(f). If deg(g(x)) # 1, then there are
no polynomials of degree 1 in ¢(F[z]), and so ¢ cannot be an automorphism (it is
not surjective). Then we have deg(g(x)) = 1, whence deg(p(f)) = deg(f). Since this
relation holds for all f € F[z|, we have established the claimed property.

Suppose that D is an integral domain. Then D is a commutative ring with the property
that, whenever a,b € D satisfy ab = 0, then either a = 0 or b = 0. It follows that the
polynomial ring £ = Dlz] is also an integral domain when endowed with polynomial
addition and multiplication in the canonical manner. The fact that E is a commutative
ring is inherited from the analogous property of D. Moroever, if A, B € FE satisfy
AB = 0, then A = 0 or B = 0. To see this, write A(z) = a,2™ + ... + ap and
B(z) = bpa™ + ... + by, with a,, # 0 and b, # 0. If AB = 0, then certainly the lead
coefficient of AB is 0, so a,b,, = 0. But D is an integral domain, so either a,, = 0 or
b, = 0, leading to a contradiction. Then, indeed, one finds that £ = D]z] is an integral
domain. But Diz,y] = Ely|, and F is itself an integral domain. Then we have show
that E[y| = D[z, y] is also an integral domain.

By the binomial theorem, one has (a + b)? = o + (?)apflb +...+ (pfl)abp*1 + bP, in
which the general term takes the shape (f ) aP~"b". Notice that when 1 <r <p—1,

(p) = p—!, 0 (mod p),

r)  rlp—r)!
and hence in a field F' of characteristic p # 0, it follows that all of the terms with
1 <r <p-—1in the expansion vanish. Thus (a + b)? = a? + bP.

When n = 1, one has (a + b)?" = (a + b)P = a? + P, as a consequence of Q7. We
proceed by induction, supposing that (a + b)?" = a?" + b for all 1 < r < n. Then
(a+b)7" = ((a+ )PV = (a+tP)P" " = (a?)P" ' + (BP)"" ' = a”" +bP". This confirms
the inductive step, and so the desired conclusion follows by induction.

(a) Let ¢ : F' — F be defined by ¢(a) = a?, where p = char(F'). Then for all a,b € F,
one has ¢(a+0b) = (a+b)? = a?+b" = p(a)+¢(b), and ¢(ab) = (ab)? = aPb? = p(a)p(b).
So ¢ defines a homomorphism. Moreover, one has ¢(a) = ¢(b) if and only if a? = b7,
and this holds if and only if 0 = a” — 0? = (a — b)?, and hence a = b. Thus ¢ is an
injective homomorphism, and hence a monomorphism.

(b) Consider the field F' = Z,(x), the field of fractions of the polynomial ring Z,|x]
(also called F,(x)). We claim that there is no element o € F' having the property that
a? = z. Suppose to the contrary that there exist u, v € Z,[z] with v # 0 and (u/v)? = =.
Then we have u(z)? = zv(z)P. But by applying the binomial theorem, we see that if
w(x) = up+urr+. .. Fupx™, then u(x)? = uf +ula? 4. .. +ubax™ € Z,y[xP], and likewise
v(x)?P € Zy[zP]. Consequently, in the relation u(z)? = zv(x)P, all of the terms appearing
on the left hand side with non-zero coefficients involve monomials ™ with p|m, while
on the right hand side these terms involve monomials ™ with n = 1 (mod p). This
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yields a contradiction, and so there exists no a € F with p(a) = o = z, whence ¢
cannot be surjective from F' into F, since x & ¢(F).

5.1, Q10. If F' is a finite field, then it has characteristic p for some prime p. Considered as an
additive group, it is then evident from Cauchy’s theorem that since pa = 0 for all
a € F, then |F| = p" for some n € N. But then the multiplicative group F'* has order
p"* — 1, and for each a € F* we have a?"~! = 1, so that a”" = a for each a € F. If
© were not surjective, then also ¢" cannot be surjective. But for each a € F, one has
©"(a) = a?" = a, so that " is surjective. We conclude that ¢ must be surjective, and
hence from Q9(a) we find that ¢ is a bijective homomorphism from F' into F', so that
© is an automorphism.



