HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 13

4.5, Q10. (a) It is tempting here to start discussing roots of polynomials, but this idea is currently beyond the scope of the course. However, if $x^2 + 7$ were not irreducible over \mathbb{R} , then we would have $x^2 + 7 = (x+a)(x+b)$ for some $a, b \in \mathbb{R}$. Thus $x^2 + (a+b)x + ab = x^2 + 7$, which shows that a + b = 0 and ab = 7, whence $a^2 = b^2 = -7$. However, for all $a \in \mathbb{R}$, we have $a^2 \ge 0$, so this leads to a contradiction. Hence $x^2 + 7$ is irreducible over \mathbb{R} . (b) The polynomial $x^3 - 3x + 3 \in \mathbb{Z}[x]$ has lead coefficient not divisible by 3, all remaining coefficients divisible by 3, and constant coefficient not divisible by 3^2 . Since 3 is prime, it therefore follows from Eisenstein's criterion that $x^3 - 3x + 3$ is irreducible over \mathbb{Z} , and then Gauss' Lemma shows that this polynomial remains irreducible over \mathbb{Q} . (c) If $x^2 + x + 1$ were not irreducible over \mathbb{Z}_2 , then we would have $x^2 + x + 1 \in (x - a)$ for some $a \in \mathbb{Z}_2$, whence $a^2 + a + 1 = 0$. But $a^2 + a = 0$, and so there is no such value of a, leading to a contradiction. Hence $x^2 + x + 1$ is irreducible over \mathbb{Z}_2 . (d) If $x^2 + 1$ were not reducible over \mathbb{Z}_{19} , then we would have $x^2 + 1 \in (x - a)$ for some $a \in \mathbb{Z}_{19}$, whence $a^2 + 1 = 0$. But then $a \neq 0$, and it follows from Fermat's Little Theorem that one then has $1 = a^{18} = (-1)^9 = -1$, which is impossible. We therefore conclude that there is no such value of a, and hence $x^2 + 1$ is irreducible over \mathbb{Z}_{19} . (e) If $x^3 - 9$ were not reducible over \mathbb{Z}_{13} , then we would have $x^3 - 9 \in (x - a)$ for some $a \in \mathbb{Z}_{13}$, whence $a^3 - 9 = 0$. But then $a \neq 0$, and it follows from Fermat's Little Theorem that $1 = a^{12} = 9^4 = 4^4 = 256 = -4$, which is impossible. We therefore conclude that there is no such value of a, and hence $x^3 - 9$ is irreducible over \mathbb{Z}_{13} .

(f) The polynomial $x^4 + 2x^2 + 2 \in \mathbb{Z}[x]$ has lead coefficient not divisible by 2, all remaining coefficients divisible by 2, and constant coefficient not divisible by 2^2 . Since 2 is prime, it therefore follows from Eisenstein's criterion that $x^4 + 2x^2 + 2$ is irreducible over \mathbb{Z} , and then Gauss' Lemma shows that this polynomial remains irreducible over \mathbb{Q} .

- 4.6, Q2. By Gauss' Lemma, the polynomial $x^3 + 3x + 2$ is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$. The latter holds if and only if $(x+1)^3 + 3(x+1) + 2 = x^3 + 3x^2 + 6x + 3$ is irreducible over $\mathbb{Z}[x]$. The latter polynomial has lead coefficient not divisible by 3, all remaining coefficients divisible by 3, and constant coefficient not divisible by 3^2 . Since 3 is prime, it therefore follows from Eisenstein's criterion that $x^3 + 3x^2 + 6x + 3$, and hence also $x^3 + 3x + 2$, is irreducible in $\mathbb{Z}[x]$, and also in $\mathbb{Q}[x]$.
- 4.6, Q3. Take a = 3k, where k is any integer with (k, 3) = 1. Then the polynomial $x^7 + 15x^2 30x + a$ has lead coefficient not divisible by 3, all remaining coefficients divisible by 3, and constant coefficient not divisible by 3^2 . Since 3 is prime, it follows from Eisenstein's criterion that $x^7 + 15x^2 30x + a$ is irreducible in $\mathbb{Z}[x]$, and by Gauss' Lemma this polynomial is therefore also irreducible in $\mathbb{Q}[x]$. There are infinitely many such values of a, and this is what we were asked to establish.
- 4.6, Q6. Suppose that f(x) is not irreducible in F[x], but factors as f(x) = u(x)v(x) with $u, v \in F[x]$ and $\deg(u) \geq \deg(v) \geq 1$, as we may suppose. Then since φ is a homomorphism, we have $g(x) = \varphi(f(x)) = \varphi(u(x))\varphi(v(x))$. Notice that $\deg(\varphi(u(x))) \geq 1$, for otherwise we have $\varphi(u(x)) \in F$, say $\varphi(u(x)) = a \in F$, and then the bijective property of the automorphism φ ensures that $u(x) = \varphi^{-1}(a) = a \in F$, contradicting the hypothesis that $\deg(u(x)) \geq 1$. Similarly, we have $\deg(\varphi(v(x))) \geq 1$, and thus $g(x) = \varphi(f(x))$ is

not irreducible. On the other hand, if g(x) is not irreducible in F[x], then we may argue similarly using φ^{-1} in place of φ , deducing that $f(x) = \varphi^{-1}(g(x))$ is not irreducible. Then f(x) is irreducible if and only if g(x) is irreducible, as required.

- 4.6, Q10. Suppose that $\varphi: F[x] \to F[x]$ is an automorphism satisfying the property that $\varphi(a) = a$ for all $a \in F$. Then given a polynomial $f(x) = a_n x^n + \ldots + a_1 x + a_0$ with $a_i \in F$ for each *i*, it follows from the homomorphism properties of φ that we have $\varphi(f) = \varphi(a_n)\varphi(x)^n + \ldots + \varphi(a_1)\varphi(x) + \varphi(a_0) = a_ng(x)^n + \ldots + a_1g(x) + a_0$, where we write $g(x) = \varphi(x) \in F[x]$. We may suppose without loss of generality that $a_n \neq 0$, and thus we deduce that $\deg(\varphi(f)) = \deg(g(x)) \cdot \deg(f)$. If $\deg(g(x)) \neq 1$, then there are no polynomials of degree 1 in $\varphi(F[x])$, and so φ cannot be an automorphism (it is not surjective). Then we have $\deg(g(x)) = 1$, whence $\deg(\varphi(f)) = \deg(f)$. Since this relation holds for all $f \in F[x]$, we have established the claimed property.
- 5.1, Q4. Suppose that D is an integral domain. Then D is a commutative ring with the property that, whenever $a, b \in D$ satisfy ab = 0, then either a = 0 or b = 0. It follows that the polynomial ring E = D[x] is also an integral domain when endowed with polynomial addition and multiplication in the canonical manner. The fact that E is a commutative ring is inherited from the analogous property of D. Moreover, if $A, B \in E$ satisfy AB = 0, then A = 0 or B = 0. To see this, write $A(x) = a_n x^n + \ldots + a_0$ and $B(x) = b_m x^m + \ldots + b_0$, with $a_n \neq 0$ and $b_m \neq 0$. If AB = 0, then certainly the lead coefficient of AB is 0, so $a_n b_m = 0$. But D is an integral domain, so either $a_n = 0$ or $b_m = 0$, leading to a contradiction. Then, indeed, one finds that E = D[x] is an integral domain. But D[x, y] = E[y], and E is itself an integral domain. Then we have show that E[y] = D[x, y] is also an integral domain.
- 5.1, Q7. By the binomial theorem, one has $(a+b)^p = a^p + {p \choose 1} a^{p-1}b + \ldots + {p \choose p-1} ab^{p-1} + b^p$, in which the general term takes the shape ${p \choose r} a^{p-r}b^r$. Notice that when $1 \le r \le p-1$,

$$\binom{p}{r} = \frac{p!}{r!(p-r)!} \equiv 0 \pmod{p},$$

and hence in a field F of characteristic $p \neq 0$, it follows that all of the terms with $1 \leq r \leq p-1$ in the expansion vanish. Thus $(a+b)^p = a^p + b^p$.

- 5.1, Q8. When n = 1, one has $(a + b)^{p^n} = (a + b)^p = a^p + b^p$, as a consequence of Q7. We proceed by induction, supposing that $(a + b)^{p^r} = a^{p^r} + b^{p^r}$ for all $1 \le r < n$. Then $(a+b)^{p^n} = ((a+b)^p)^{p^{n-1}} = (a^p+b^p)^{p^{n-1}} = (a^p)^{p^{n-1}} + (b^p)^{p^{n-1}} = a^{p^n} + b^{p^n}$. This confirms the inductive step, and so the desired conclusion follows by induction.
- 5.1, Q9. (a) Let $\varphi : F \to F$ be defined by $\varphi(a) = a^p$, where $p = \operatorname{char}(F)$. Then for all $a, b \in F$, one has $\varphi(a+b) = (a+b)^p = a^p + b^p = \varphi(a) + \varphi(b)$, and $\varphi(ab) = (ab)^p = a^p b^p = \varphi(a)\varphi(b)$. So φ defines a homomorphism. Moreover, one has $\varphi(a) = \varphi(b)$ if and only if $a^p = b^p$, and this holds if and only if $0 = a^p - b^p = (a - b)^p$, and hence a = b. Thus φ is an injective homomorphism, and hence a monomorphism.

(b) Consider the field $F = \mathbb{Z}_p(x)$, the field of fractions of the polynomial ring $\mathbb{Z}_p[x]$ (also called $\mathbb{F}_p(x)$). We claim that there is no element $\alpha \in F$ having the property that $\alpha^p = x$. Suppose to the contrary that there exist $u, v \in \mathbb{Z}_p[x]$ with $v \neq 0$ and $(u/v)^p = x$. Then we have $u(x)^p = xv(x)^p$. But by applying the binomial theorem, we see that if $u(x) = u_0 + u_1x + \ldots + u_nx^n$, then $u(x)^p = u_0^p + u_1^px^p + \ldots + u_n^px^{np} \in \mathbb{Z}_p[x^p]$, and likewise $v(x)^p \in \mathbb{Z}_p[x^p]$. Consequently, in the relation $u(x)^p = xv(x)^p$, all of the terms appearing on the left hand side with non-zero coefficients involve monomials x^m with p|m, while on the right hand side these terms involve monomials x^n with $n \equiv 1 \pmod{p}$. This yields a contradiction, and so there exists no $\alpha \in F$ with $\varphi(\alpha) = \alpha^p = x$, whence φ cannot be surjective from F into F, since $x \notin \varphi(F)$.

5.1, Q10. If F is a finite field, then it has characteristic p for some prime p. Considered as an additive group, it is then evident from Cauchy's theorem that since pa = 0 for all $a \in F$, then $|F| = p^n$ for some $n \in \mathbb{N}$. But then the multiplicative group F^{\times} has order $p^n - 1$, and for each $a \in F^{\times}$ we have $a^{p^n-1} = 1$, so that $a^{p^n} = a$ for each $a \in F$. If φ were not surjective, then also φ^n cannot be surjective. But for each $a \in F$, one has $\varphi^n(a) = a^{p^n} = a$, so that φ^n is surjective. We conclude that φ must be surjective, and hence from Q9(a) we find that φ is a bijective homomorphism from F into F, so that φ is an automorphism.