HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 13

4.5, Q10. (a) It is tempting here to start discussing roots of polynomials, but this idea is currently beyond the scope of the course. However, if $x^{2}+7$ were not irreducible over \mathbb{R}, then we would have $x^{2}+7=(x+a)(x+b)$ for some $a, b \in \mathbb{R}$. Thus $x^{2}+(a+b) x+a b=x^{2}+7$, which shows that $a+b=0$ and $a b=7$, whence $a^{2}=b^{2}=-7$. However, for all $a \in \mathbb{R}$, we have $a^{2} \geq 0$, so this leads to a contradiction. Hence $x^{2}+7$ is irreducible over \mathbb{R}.
(b) The polynomial $x^{3}-3 x+3 \in \mathbb{Z}[x]$ has lead coefficient not divisible by 3 , all remaining coefficients divisible by 3 , and constant coefficient not divisible by 3^{2}. Since 3 is prime, it therefore follows from Eisenstein's criterion that $x^{3}-3 x+3$ is irreducible over \mathbb{Z}, and then Gauss' Lemma shows that this polynomial remains irreducible over \mathbb{Q}.
(c) If $x^{2}+x+1$ were not irreducible over \mathbb{Z}_{2}, then we would have $x^{2}+x+1 \in(x-a)$ for some $a \in \mathbb{Z}_{2}$, whence $a^{2}+a+1=0$. But $a^{2}+a=0$, and so there is no such value of a, leading to a contradiction. Hence $x^{2}+x+1$ is irreducible over \mathbb{Z}_{2}.
(d) If $x^{2}+1$ were not reducible over \mathbb{Z}_{19}, then we would have $x^{2}+1 \in(x-a)$ for some $a \in \mathbb{Z}_{19}$, whence $a^{2}+1=0$. But then $a \neq 0$, and it follows from Fermat's Little Theorem that one then has $1=a^{18}=(-1)^{9}=-1$, which is impossible. We therefore conclude that there is no such value of a, and hence $x^{2}+1$ is irreducible over \mathbb{Z}_{19}.
(e) If $x^{3}-9$ were not reducible over \mathbb{Z}_{13}, then we would have $x^{3}-9 \in(x-a)$ for some $a \in \mathbb{Z}_{13}$, whence $a^{3}-9=0$. But then $a \neq 0$, and it follows from Fermat's Little Theorem that $1=a^{12}=9^{4}=4^{4}=256=-4$, which is impossible. We therefore conclude that there is no such value of a, and hence $x^{3}-9$ is irreducible over \mathbb{Z}_{13}.
(f) The polynomial $x^{4}+2 x^{2}+2 \in \mathbb{Z}[x]$ has lead coefficient not divisible by 2 , all remaining coefficients divisible by 2 , and constant coefficient not divisible by 2^{2}. Since 2 is prime, it therefore follows from Eisenstein's criterion that $x^{4}+2 x^{2}+2$ is irreducible over \mathbb{Z}, and then Gauss' Lemma shows that this polynomial remains irreducible over \mathbb{Q}.
4.6, Q2. By Gauss' Lemma, the polynomial $x^{3}+3 x+2$ is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$. The latter holds if and only if $(x+1)^{3}+3(x+1)+2=x^{3}+3 x^{2}+6 x+3$ is irreducible over $\mathbb{Z}[x]$. The latter polynomial has lead coefficient not divisible by 3 , all remaining coefficients divisible by 3 , and constant coefficient not divisible by 3^{2}. Since 3 is prime, it therefore follows from Eisenstein's criterion that $x^{3}+3 x^{2}+6 x+3$, and hence also $x^{3}+3 x+2$, is irreducible in $\mathbb{Z}[x]$, and also in $\mathbb{Q}[x]$.
4.6, Q3. Take $a=3 k$, where k is any integer with $(k, 3)=1$. Then the polynomial $x^{7}+15 x^{2}-$ $30 x+a$ has lead coefficient not divisible by 3 , all remaining coefficients divisible by 3 , and constant coefficient not divisible by 3^{2}. Since 3 is prime, it follows from Eisenstein's criterion that $x^{7}+15 x^{2}-30 x+a$ is irreducible in $\mathbb{Z}[x]$, and by Gauss' Lemma this polynomial is therefore also irreducible in $\mathbb{Q}[x]$. There are infinitely many such values of a, and this is what we were asked to establish.
4.6, Q6. Suppose that $f(x)$ is not irreducible in $F[x]$, but factors as $f(x)=u(x) v(x)$ with $u, v \in$ $F[x]$ and $\operatorname{deg}(u) \geq \operatorname{deg}(v) \geq 1$, as we may suppose. Then since φ is a homomorphism, we have $g(x)=\varphi(f(x))=\varphi(u(x)) \varphi(v(x))$. Notice that $\operatorname{deg}(\varphi(u(x))) \geq 1$, for otherwise we have $\varphi(u(x)) \in F$, say $\varphi(u(x))=a \in F$, and then the bijective property of the automorphism φ ensures that $u(x)=\varphi^{-1}(a)=a \in F$, contradicting the hypothesis that $\operatorname{deg}(u(x)) \geq 1$. Similarly, we have $\operatorname{deg}(\varphi(v(x))) \geq 1$, and thus $g(x)=\varphi(f(x))$ is
not irreducible. On the other hand, if $g(x)$ is not irreducible in $F[x]$, then we may argue similarly using φ^{-1} in place of φ, deducing that $f(x)=\varphi^{-1}(g(x))$ is not irreducible. Then $f(x)$ is irreducible if and only if $g(x)$ is irreducible, as required.
4.6, Q10. Suppose that $\varphi: F[x] \rightarrow F[x]$ is an automorphism satisfying the property that $\varphi(a)=a$ for all $a \in F$. Then given a polynomial $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ with $a_{i} \in F$ for each i, it follows from the homomorphism properties of φ that we have $\varphi(f)=$ $\varphi\left(a_{n}\right) \varphi(x)^{n}+\ldots+\varphi\left(a_{1}\right) \varphi(x)+\varphi\left(a_{0}\right)=a_{n} g(x)^{n}+\ldots+a_{1} g(x)+a_{0}$, where we write $g(x)=\varphi(x) \in F[x]$. We may suppose without loss of generality that $a_{n} \neq 0$, and thus we deduce that $\operatorname{deg}(\varphi(f))=\operatorname{deg}(g(x)) \cdot \operatorname{deg}(f)$. If $\operatorname{deg}(g(x)) \neq 1$, then there are no polynomials of degree 1 in $\varphi(F[x])$, and so φ cannot be an automorphism (it is not surjective). Then we have $\operatorname{deg}(g(x))=1$, whence $\operatorname{deg}(\varphi(f))=\operatorname{deg}(f)$. Since this relation holds for all $f \in F[x]$, we have established the claimed property.
5.1, Q4. Suppose that D is an integral domain. Then D is a commutative ring with the property that, whenever $a, b \in D$ satisfy $a b=0$, then either $a=0$ or $b=0$. It follows that the polynomial ring $E=D[x]$ is also an integral domain when endowed with polynomial addition and multiplication in the canonical manner. The fact that E is a commutative ring is inherited from the analogous property of D. Moroever, if $A, B \in E$ satisfy $A B=0$, then $A=0$ or $B=0$. To see this, write $A(x)=a_{n} x^{n}+\ldots+a_{0}$ and $B(x)=b_{m} x^{m}+\ldots+b_{0}$, with $a_{n} \neq 0$ and $b_{m} \neq 0$. If $A B=0$, then certainly the lead coefficient of $A B$ is 0 , so $a_{n} b_{m}=0$. But D is an integral domain, so either $a_{n}=0$ or $b_{m}=0$, leading to a contradiction. Then, indeed, one finds that $E=D[x]$ is an integral domain. But $D[x, y]=E[y]$, and E is itself an integral domain. Then we have show that $E[y]=D[x, y]$ is also an integral domain.
5.1, Q7. By the binomial theorem, one has $(a+b)^{p}=a^{p}+\binom{p}{1} a^{p-1} b+\ldots+\binom{p}{p-1} a b^{p-1}+b^{p}$, in which the general term takes the shape $\binom{p}{r} a^{p-r} b^{r}$. Notice that when $1 \leq r \leq p-1$,

$$
\binom{p}{r}=\frac{p!}{r!(p-r)!} \equiv 0 \quad(\bmod p)
$$

and hence in a field F of characteristic $p \neq 0$, it follows that all of the terms with $1 \leq r \leq p-1$ in the expansion vanish. Thus $(a+b)^{p}=a^{p}+b^{p}$.
5.1, Q8. When $n=1$, one has $(a+b)^{p^{n}}=(a+b)^{p}=a^{p}+b^{p}$, as a consequence of Q7. We proceed by induction, supposing that $(a+b)^{p^{r}}=a^{p^{r}}+b^{p^{r}}$ for all $1 \leq r<n$. Then $(a+b)^{p^{n}}=\left((a+b)^{p}\right)^{p^{n-1}}=\left(a^{p}+b^{p}\right)^{p^{n-1}}=\left(a^{p}\right)^{p^{n-1}}+\left(b^{p}\right)^{p^{n-1}}=a^{p^{n}}+b^{p^{n}}$. This confirms the inductive step, and so the desired conclusion follows by induction.
5.1, Q9. (a) Let $\varphi: F \rightarrow F$ be defined by $\varphi(a)=a^{p}$, where $p=\operatorname{char}(F)$. Then for all $a, b \in F$, one has $\varphi(a+b)=(a+b)^{p}=a^{p}+b^{p}=\varphi(a)+\varphi(b)$, and $\varphi(a b)=(a b)^{p}=a^{p} b^{p}=\varphi(a) \varphi(b)$. So φ defines a homomorphism. Moreover, one has $\varphi(a)=\varphi(b)$ if and only if $a^{p}=b^{p}$, and this holds if and only if $0=a^{p}-b^{p}=(a-b)^{p}$, and hence $a=b$. Thus φ is an injective homomorphism, and hence a monomorphism.
(b) Consider the field $F=\mathbb{Z}_{p}(x)$, the field of fractions of the polynomial ring $\mathbb{Z}_{p}[x]$ (also called $\mathbb{F}_{p}(x)$). We claim that there is no element $\alpha \in F$ having the property that $\alpha^{p}=x$. Suppose to the contrary that there exist $u, v \in \mathbb{Z}_{p}[x]$ with $v \neq 0$ and $(u / v)^{p}=x$. Then we have $u(x)^{p}=x v(x)^{p}$. But by applying the binomial theorem, we see that if $u(x)=u_{0}+u_{1} x+\ldots+u_{n} x^{n}$, then $u(x)^{p}=u_{0}^{p}+u_{1}^{p} x^{p}+\ldots+u_{n}^{p} x^{n p} \in \mathbb{Z}_{p}\left[x^{p}\right]$, and likewise $v(x)^{p} \in \mathbb{Z}_{p}\left[x^{p}\right]$. Consequently, in the relation $u(x)^{p}=x v(x)^{p}$, all of the terms appearing on the left hand side with non-zero coefficients involve monomials x^{m} with $p \mid m$, while on the right hand side these terms involve monomials x^{n} with $n \equiv 1(\bmod p)$. This
yields a contradiction, and so there exists no $\alpha \in F$ with $\varphi(\alpha)=\alpha^{p}=x$, whence φ cannot be surjective from F into F, since $x \notin \varphi(F)$.
5.1, Q10. If F is a finite field, then it has characteristic p for some prime p. Considered as an additive group, it is then evident from Cauchy's theorem that since $p a=0$ for all $a \in F$, then $|F|=p^{n}$ for some $n \in \mathbb{N}$. But then the multiplicative group F^{\times}has order $p^{n}-1$, and for each $a \in F^{\times}$we have $a^{p^{n}-1}=1$, so that $a^{p^{n}}=a$ for each $a \in F$. If φ were not surjective, then also φ^{n} cannot be surjective. But for each $a \in F$, one has $\varphi^{n}(a)=a^{p^{n}}=a$, so that φ^{n} is surjective. We conclude that φ must be surjective, and hence from Q9(a) we find that φ is a bijective homomorphism from F into F, so that φ is an automorphism.

