
HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 13

4.5, Q10. (a) It is tempting here to start discussing roots of polynomials, but this idea is currently
beyond the scope of the course. However, if x2 + 7 were not irreducible over R, then we
would have x2 + 7 = (x+ a)(x+ b) for some a, b ∈ R. Thus x2 + (a+ b)x+ ab = x2 + 7,
which shows that a + b = 0 and ab = 7, whence a2 = b2 = −7. However, for all a ∈ R,
we have a2 ≥ 0, so this leads to a contradiction. Hence x2 + 7 is irreducible over R.
(b) The polynomial x3−3x+3 ∈ Z[x] has lead coefficient not divisible by 3, all remaining
coefficients divisible by 3, and constant coefficient not divisible by 32. Since 3 is prime,
it therefore follows from Eisenstein’s criterion that x3−3x+ 3 is irreducible over Z, and
then Gauss’ Lemma shows that this polynomial remains irreducible over Q.
(c) If x2 + x+ 1 were not irreducible over Z2, then we would have x2 + x+ 1 ∈ (x− a)
for some a ∈ Z2, whence a2 + a+ 1 = 0. But a2 + a = 0, and so there is no such value
of a, leading to a contradiction. Hence x2 + x+ 1 is irreducible over Z2.
(d) If x2 + 1 were not reducible over Z19, then we would have x2 + 1 ∈ (x − a) for
some a ∈ Z19, whence a2 + 1 = 0. But then a 6= 0, and it follows from Fermat’s Little
Theorem that one then has 1 = a18 = (−1)9 = −1, which is impossible. We therefore
conclude that there is no such value of a, and hence x2 + 1 is irreducible over Z19.
(e) If x3 − 9 were not reducible over Z13, then we would have x3 − 9 ∈ (x− a) for some
a ∈ Z13, whence a3−9 = 0. But then a 6= 0, and it follows from Fermat’s Little Theorem
that 1 = a12 = 94 = 44 = 256 = −4, which is impossible. We therefore conclude that
there is no such value of a, and hence x3 − 9 is irreducible over Z13.
(f) The polynomial x4 + 2x2 + 2 ∈ Z[x] has lead coefficient not divisible by 2, all
remaining coefficients divisible by 2, and constant coefficient not divisible by 22. Since
2 is prime, it therefore follows from Eisenstein’s criterion that x4 + 2x2 + 2 is irreducible
over Z, and then Gauss’ Lemma shows that this polynomial remains irreducible over Q.

4.6, Q2. By Gauss’ Lemma, the polynomial x3 + 3x+ 2 is irreducible in Q[x] if and only if it is
irreducible in Z[x]. The latter holds if and only if (x+1)3+3(x+1)+2 = x3+3x2+6x+3
is irreducible over Z[x]. The latter polynomial has lead coefficient not divisible by 3, all
remaining coefficients divisible by 3, and constant coefficient not divisible by 32. Since
3 is prime, it therefore follows from Eisenstein’s criterion that x3 + 3x2 + 6x + 3, and
hence also x3 + 3x+ 2, is irreducible in Z[x], and also in Q[x].

4.6, Q3. Take a = 3k, where k is any integer with (k, 3) = 1. Then the polynomial x7 + 15x2 −
30x + a has lead coefficient not divisible by 3, all remaining coefficients divisible by 3,
and constant coefficient not divisible by 32. Since 3 is prime, it follows from Eisenstein’s
criterion that x7 + 15x2 − 30x + a is irreducible in Z[x], and by Gauss’ Lemma this
polynomial is therefore also irreducible in Q[x]. There are infinitely many such values
of a, and this is what we were asked to establish.

4.6, Q6. Suppose that f(x) is not irreducible in F [x], but factors as f(x) = u(x)v(x) with u, v ∈
F [x] and deg(u) ≥ deg(v) ≥ 1, as we may suppose. Then since ϕ is a homomorphism,
we have g(x) = ϕ(f(x)) = ϕ(u(x))ϕ(v(x)). Notice that deg(ϕ(u(x))) ≥ 1, for otherwise
we have ϕ(u(x)) ∈ F , say ϕ(u(x)) = a ∈ F , and then the bijective property of the
automorphism ϕ ensures that u(x) = ϕ−1(a) = a ∈ F , contradicting the hypothesis
that deg(u(x)) ≥ 1. Similarly, we have deg(ϕ(v(x))) ≥ 1, and thus g(x) = ϕ(f(x)) is
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not irreducible. On the other hand, if g(x) is not irreducible in F [x], then we may argue
similarly using ϕ−1 in place of ϕ, deducing that f(x) = ϕ−1(g(x)) is not irreducible.
Then f(x) is irreducible if and only if g(x) is irreducible, as required.

4.6, Q10. Suppose that ϕ : F [x]→ F [x] is an automorphism satisfying the property that ϕ(a) = a
for all a ∈ F . Then given a polynomial f(x) = anx

n + . . . + a1x + a0 with ai ∈ F
for each i, it follows from the homomorphism properties of ϕ that we have ϕ(f) =
ϕ(an)ϕ(x)n + . . . + ϕ(a1)ϕ(x) + ϕ(a0) = ang(x)n + . . . + a1g(x) + a0, where we write
g(x) = ϕ(x) ∈ F [x]. We may suppose without loss of generality that an 6= 0, and
thus we deduce that deg(ϕ(f)) = deg(g(x)) · deg(f). If deg(g(x)) 6= 1, then there are
no polynomials of degree 1 in ϕ(F [x]), and so ϕ cannot be an automorphism (it is
not surjective). Then we have deg(g(x)) = 1, whence deg(ϕ(f)) = deg(f). Since this
relation holds for all f ∈ F [x], we have established the claimed property.

5.1, Q4. Suppose that D is an integral domain. Then D is a commutative ring with the property
that, whenever a, b ∈ D satisfy ab = 0, then either a = 0 or b = 0. It follows that the
polynomial ring E = D[x] is also an integral domain when endowed with polynomial
addition and multiplication in the canonical manner. The fact that E is a commutative
ring is inherited from the analogous property of D. Moroever, if A,B ∈ E satisfy
AB = 0, then A = 0 or B = 0. To see this, write A(x) = anx

n + . . . + a0 and
B(x) = bmx

m + . . . + b0, with an 6= 0 and bm 6= 0. If AB = 0, then certainly the lead
coefficient of AB is 0, so anbm = 0. But D is an integral domain, so either an = 0 or
bm = 0, leading to a contradiction. Then, indeed, one finds that E = D[x] is an integral
domain. But D[x, y] = E[y], and E is itself an integral domain. Then we have show
that E[y] = D[x, y] is also an integral domain.

5.1, Q7. By the binomial theorem, one has (a + b)p = ap +
(
p
1

)
ap−1b + . . . +

(
p

p−1

)
abp−1 + bp, in

which the general term takes the shape
(
p
r

)
ap−rbr. Notice that when 1 ≤ r ≤ p− 1,(

p

r

)
=

p!

r!(p− r)!
≡ 0 (mod p),

and hence in a field F of characteristic p 6= 0, it follows that all of the terms with
1 ≤ r ≤ p− 1 in the expansion vanish. Thus (a+ b)p = ap + bp.

5.1, Q8. When n = 1, one has (a + b)p
n

= (a + b)p = ap + bp, as a consequence of Q7. We
proceed by induction, supposing that (a + b)p

r
= ap

r
+ bp

r
for all 1 ≤ r < n. Then

(a+ b)p
n

= ((a+ b)p)p
n−1

= (ap + bp)p
n−1

= (ap)p
n−1

+(bp)p
n−1

= ap
n

+ bp
n
. This confirms

the inductive step, and so the desired conclusion follows by induction.

5.1, Q9. (a) Let ϕ : F → F be defined by ϕ(a) = ap, where p = char(F ). Then for all a, b ∈ F ,
one has ϕ(a+b) = (a+b)p = ap+bp = ϕ(a)+ϕ(b), and ϕ(ab) = (ab)p = apbp = ϕ(a)ϕ(b).
So ϕ defines a homomorphism. Moreover, one has ϕ(a) = ϕ(b) if and only if ap = bp,
and this holds if and only if 0 = ap − bp = (a − b)p, and hence a = b. Thus ϕ is an
injective homomorphism, and hence a monomorphism.
(b) Consider the field F = Zp(x), the field of fractions of the polynomial ring Zp[x]
(also called Fp(x)). We claim that there is no element α ∈ F having the property that
αp = x. Suppose to the contrary that there exist u, v ∈ Zp[x] with v 6= 0 and (u/v)p = x.
Then we have u(x)p = xv(x)p. But by applying the binomial theorem, we see that if
u(x) = u0 +u1x+ . . .+unx

n, then u(x)p = up0 +up1x
p + . . .+upnx

np ∈ Zp[x
p], and likewise

v(x)p ∈ Zp[x
p]. Consequently, in the relation u(x)p = xv(x)p, all of the terms appearing

on the left hand side with non-zero coefficients involve monomials xm with p|m, while
on the right hand side these terms involve monomials xn with n ≡ 1 (mod p). This
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yields a contradiction, and so there exists no α ∈ F with ϕ(α) = αp = x, whence ϕ
cannot be surjective from F into F , since x 6∈ ϕ(F ).

5.1, Q10. If F is a finite field, then it has characteristic p for some prime p. Considered as an
additive group, it is then evident from Cauchy’s theorem that since pa = 0 for all
a ∈ F , then |F | = pn for some n ∈ N. But then the multiplicative group F× has order
pn − 1, and for each a ∈ F× we have ap

n−1 = 1, so that ap
n

= a for each a ∈ F . If
ϕ were not surjective, then also ϕn cannot be surjective. But for each a ∈ F , one has
ϕn(a) = ap

n
= a, so that ϕn is surjective. We conclude that ϕ must be surjective, and

hence from Q9(a) we find that ϕ is a bijective homomorphism from F into F , so that
ϕ is an automorphism.


