
HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 2

2.1, Q8. When n = 1 the claimed conclusion is immediate. We prove the general result by
induction, supposing that n > 1 and that it has already been established that when
1 ≤ m < n, one has (a ∗ b)m = am ∗ bm. Let n > 1. Then (a ∗ b)n = (a ∗ b) ∗ (a ∗ b)n−1.
By the inductive hypothesis, one has (a ∗ b)n−1 = an−1 ∗ bn−1, and hence

(a ∗ b)n = (a ∗ b) ∗ (an−1 ∗ bn−1) = a ∗ (b ∗ an−1) ∗ bn−1

= a ∗ (an−1 ∗ b) ∗ bn−1 = (a ∗ an−1) ∗ (b ∗ bn−1) = an ∗ bn.
This confirms the inductive hypothesis for m = n, and so the desired conclusion follows
for positive integers n by induction. When n = 0 one has (a ∗ b)0 = e = a0 ∗ b0.
Also, when n is negative, say n = −N with N > 0, one may use the first part already
proved to show that one has (a ∗ b)n = ((a ∗ b)−1)N = (b−1 ∗ a−1)N = (b−1)N ∗ (a−1)N =
b−N ∗ a−N = a−N ∗ b−N = an ∗ bn.

2.1, Q9. If a2 = e for all a ∈ G, then a−1 = a for all a ∈ G. Thus, since (ab)2 = e for all a, b ∈ G,
we see that abab = e, whence a−1(abab)b−1 = ab, and thus ba = ab. Hence G is abelian.

2.1, Q18. When a ∈ G, one has a ∗ a−1 = e = a−1 ∗ a, by the definition of an inverse. Hence
a−1 ∗ a = e = a ∗ a−1, so that a acts as an inverse of a−1, so (a−1)−1 = a. We can
therefore pair elements a ∈ G with their corresponding inverse elements a−1 ∈ G. Since
(a−1)−1 = a, these pairs are disjoint from one another. So one can partition the elements
of a finite group into subsets {a, b} where b = a−1. It is possible that a−1 = a, in which
case b = a. Let r denote the number of these sets {a, b} where b = a, and let s denote
the corresponding number with b 6= a. Then |G| = r + 2s. Notice that r ≥ 1, in view
of the special subset with a = b = e. If |G| is even, we must have r even, and hence
r ≥ 2. Thus, there is at least one subset {a, b} in this partition with a = b aside from
the trivial case with a = b = e. Hence there is indeed an element a ∈ G with a = a−1.

2.1, Q26. Since G is finite, the powers am cannot all be distinct for m ∈ Z≥0, and so there must
be integers n and k with 0 ≤ k < n + k satisfying ak = an+k. Thus, by the cancellation
property, one has an = e. Notice that this integer n may depend on a.

2.1, Q27. By problem 26, for each a ∈ G there exists an integer n = n(a) satisfying the property
that an = e. Take m to be the least common multiple of all the integers n(a), for a ∈ G.
This integer exists because G is finite, and moreover n(a)|m for each a ∈ G. Putting
l(a) = m/n(a), we see that for each a ∈ G, one has

am = al(a)n(a) = (an(a))l(a) = el(a) = e,

and thus am = e uniformly for every a ∈ G.

2.1, Q28. Suppose that x ∈ G. Then there exists y ∈ G so that y ∗ x = e, and there exists
z ∈ G so that z ∗ y = e. Thus z ∗ ((y ∗ x) ∗ y) = z ∗ (e ∗ y) = z ∗ y = e, and yet
(z ∗ y) ∗ (x ∗ y) = e ∗ (x ∗ y) = x ∗ y. Hence, by associativity, we have x ∗ y = e.
This shows that left inverses are always right inverses. Consequently, we find that
x ∗ e = x ∗ (y ∗ x) = (x ∗ y) ∗ x = e ∗ x = x. Hence x ∗ e = x for all x ∈ G, which
shows that left identities are always right identities. This completes the proof that G is
a group.
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2.2, Q1. We must show that G contains an identity, and also that each element of G has an
inverse. But for each a ∈ G, property (1) shows that there is an x ∈ G such that
ax = a, and property (2) shows that there is a u ∈ G such that ua = a. Of course,
these elements x and u might depend on a. But if b is any element of G, then there
exists z ∈ G so that az = b, and then ub = uaz = az = b, and there exists w ∈ G so
that wa = b, and then bx = wax = wa = b. Thus we see that u and x are left and right
inverses for all elements of G. In particular, one has u = ux = x, so that there is an
element e = u = x which acts as an identity for all elements of G. Observe next that
properties (1) and (2) show that for each a ∈ G, there exist g, h ∈ G for which ag = e
and ha = e. But then h = he = hag = eg = g. Thus all elements a ∈ G possess an
inverse element (a−1 = g = h) that acts as an inverse on both left and right.

2.2, Q3. Suppose that (ab)i = aibi for i = n, n + 1 and n + 2. Then one has (ab)n = anbn and
(ab)n+1 = an+1bn+1, whence an+1bn+1 = ab(ab)n = abanbn. By the cancellation property
(multiply by a−1 on the left and b−n on the right), this shows that anb = ban. Similarly,
one has an+1b = ban+1. But then ban+1 = a(anb) = aban, so that the cancellation
property (multiply by a−n on the right) yields ba = ab. Since this relation is presumed
to hold for all a and b, we find that G is abelian.

2.2, Q5. Consider arbitrary elements a and b of G, and apply the cancellation property. We
have a(ba)2b = a3b3, whence (ba)2 = a2b2. Likewise, we have a(ba)4b = a5b5, so that
(ba)4 = a4b4. Hence a4b4 = (a2b2)(a2b2), and this shows that a2b2 = b2a2. Since these
relations hold for all a, b ∈ G, we can reverse the roles of a and b to obtain b2a2 = (ab)2,
whence a2b2 = b2a2 = abab, which in turn shows that ab = ba. Since this relation holds
for all a, b ∈ G, we have shown that G is abelian.

2.3, Q3. We can write the elements of S3 in cycle notation, so that

S3 = {e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.
By Lagrange’s theorem, any subgroup of S3 must have order dividing |S3| = 6, so the
possible orders for subgroups are 1, 2, 3, 6. The only subgroup of order 1 is {e}, and the
only subgroup of order 6 is S3 itself. Any subgroup of order 2 must be cyclic, because
2 is prime, and thus we have 3 subgroups of order 2, namely

H1 = 〈(1, 2)〉, H2 = 〈(1, 3)〉, H3 = 〈(2, 3)〉.
Any subgroup containing more than one distinct transposition has order larger than 2,
while the 3-cycles generate a subgroup of order 3, namely

H4 = 〈(1, 2, 3)〉 = 〈(1, 3, 2)〉 = {e, (1, 2, 3), (1, 3, 2)}.
The only subgroups of order 3 are again cyclic, since 3 is prime, and so cannot contain
any transposition (an element of order 2). Thus H4 is the only subgroup of order 3.
We have therefore shown that the only subgroups of S3 are the trivial subgroups {e}
and S3, three subgroups H1, H2 and H3 of order 2, and one subgroup H4 of order
3. [Of course, one can achieve the same answer without using Lagrange’s theorem, by
observing that whenever a subgroup contains any two distinct transpositions, then it
contains the whole of S3, and likewise if it contains a transposition and a 3-cycle.]

2.3, Q12. Consider the cyclic group G = 〈a〉 = {an : n ∈ Z}. If one considers any two elements
of G, say an and am for some integers m,n ∈ Z, then one finds that anam = an+m =
am+n = aman. Thus any two elements of G commute, and we see that all cyclic groups
are abelian. (Notice that the abelian property of (Z,+) is inherited by 〈a〉 by virtue of
the fact that its elements are defined by the exponent of a).
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2.3, Q14. Suppose that G has no proper subgroups, and (by way of deriving a contradiction)
assume that G is not cyclic. Since G is not cyclic, it cannot be the trivial group, and
so contains an element a 6= e. Since G is not cyclic, it is not equal to the cyclic group
〈a〉, and thus there is an element b of G with b 6∈ 〈a〉. But then 〈a〉 is a subgroup of G
which is not equal to either {e} or G, and hence is a proper subgroup. So we derive a
contradiction, and are forced to conclude that whenever G has no proper subgroups, it
is cyclic.

2.3, Q24. We apply the subgroup criterion. If a, b ∈ N , then a, b ∈ x−1Hx for all x ∈ G,
whence xax−1 and xbx−1 both lie in H for all x ∈ G. But then (xax−1)(xbx−1)−1 =
(xax−1)(xb−1x−1) = xab−1x−1 ∈ H for all x ∈ G, whence ab−1 ∈ x−1Hx for all x ∈ G.
Thus ab−1 ∈ N , and by the subgroup criterion, it follows that N is a subgroup of G.

Similarly, if n ∈ N , then xnx−1 ∈ H for all x ∈ G, whence for any given y ∈ G we
have x(y−1ny)x−1 = (xy−1)n(xy−1)−1 ∈ H for all x ∈ G. Thus y−1ny ∈ N for all y ∈ G,
whence y−1Ny ⊆ N for all y ∈ G. A similar argument shows that yNy−1 ⊆ N for all
y ∈ G, whence N ⊆ y−1Ny for all y ∈ G. Thus indeed N = y−1Ny for each y ∈ G.

2.3, Q26. If Ha ∩ Hb 6= ∅, then there exists some element g ∈ G with g ∈ Ha and g ∈ Hb, say
h1a = g = h2b for some h1, h2 ∈ H. But then b = h3a, with h3 = h−1

2 h1 ∈ H. This
shows that whenever h ∈ H, one has hb = hh3a ∈ Ha, whence Hb ⊆ Ha. Similarly,
and by symmetry, one has Ha ⊆ Hb, and thus Ha = Hb. So for all a, b ∈ G, one has
either Ha ∩Hb = ∅, or Ha = Hb, as required.

2.3, Q29. We have x−1Mx ⊆ M for all x ∈ G. Then for all m ∈ M and all y ∈ G, one has
y−1my ∈M , say y−1my = m0, for some m0 ∈M depending on y. Given any x ∈ G, by
considering the situation with y = x−1, we see that m = ym0y

−1 = x−1m0x ∈ x−1Mx.
Then for all x ∈ G, we see that x−1Mx contains all elements m of M , that is M ⊆
x−1Mx. Since we started by assuming that x−1Mx ⊆ M for all x ∈ G, we see that in
fact x−1Mx = M for all x ∈ G.


