HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 2

2.1, Q8. When $n=1$ the claimed conclusion is immediate. We prove the general result by induction, supposing that $n>1$ and that it has already been established that when $1 \leq m<n$, one has $(a * b)^{m}=a^{m} * b^{m}$. Let $n>1$. Then $(a * b)^{n}=(a * b) *(a * b)^{n-1}$. By the inductive hypothesis, one has $(a * b)^{n-1}=a^{n-1} * b^{n-1}$, and hence

$$
\begin{aligned}
(a * b)^{n} & =(a * b) *\left(a^{n-1} * b^{n-1}\right)=a *\left(b * a^{n-1}\right) * b^{n-1} \\
& =a *\left(a^{n-1} * b\right) * b^{n-1}=\left(a * a^{n-1}\right) *\left(b * b^{n-1}\right)=a^{n} * b^{n}
\end{aligned}
$$

This confirms the inductive hypothesis for $m=n$, and so the desired conclusion follows for positive integers n by induction. When $n=0$ one has $(a * b)^{0}=e=a^{0} * b^{0}$. Also, when n is negative, say $n=-N$ with $N>0$, one may use the first part already proved to show that one has $(a * b)^{n}=\left((a * b)^{-1}\right)^{N}=\left(b^{-1} * a^{-1}\right)^{N}=\left(b^{-1}\right)^{N} *\left(a^{-1}\right)^{N}=$ $b^{-N} * a^{-N}=a^{-N} * b^{-N}=a^{n} * b^{n}$.
2.1, Q9. If $a^{2}=e$ for all $a \in G$, then $a^{-1}=a$ for all $a \in G$. Thus, since $(a b)^{2}=e$ for all $a, b \in G$, we see that $a b a b=e$, whence $a^{-1}(a b a b) b^{-1}=a b$, and thus $b a=a b$. Hence G is abelian.
2.1, Q18. When $a \in G$, one has $a * a^{-1}=e=a^{-1} * a$, by the definition of an inverse. Hence $a^{-1} * a=e=a * a^{-1}$, so that a acts as an inverse of a^{-1}, so $\left(a^{-1}\right)^{-1}=a$. We can therefore pair elements $a \in G$ with their corresponding inverse elements $a^{-1} \in G$. Since $\left(a^{-1}\right)^{-1}=a$, these pairs are disjoint from one another. So one can partition the elements of a finite group into subsets $\{a, b\}$ where $b=a^{-1}$. It is possible that $a^{-1}=a$, in which case $b=a$. Let r denote the number of these sets $\{a, b\}$ where $b=a$, and let s denote the corresponding number with $b \neq a$. Then $|G|=r+2 s$. Notice that $r \geq 1$, in view of the special subset with $a=b=e$. If $|G|$ is even, we must have r even, and hence $r \geq 2$. Thus, there is at least one subset $\{a, b\}$ in this partition with $a=b$ aside from the trivial case with $a=b=e$. Hence there is indeed an element $a \in G$ with $a=a^{-1}$.
2.1, Q26. Since G is finite, the powers a^{m} cannot all be distinct for $m \in \mathbb{Z}_{\geq 0}$, and so there must be integers n and k with $0 \leq k<n+k$ satisfying $a^{k}=a^{n+k}$. Thus, by the cancellation property, one has $a^{n}=e$. Notice that this integer n may depend on a.
2.1, Q27. By problem 26, for each $a \in G$ there exists an integer $n=n(a)$ satisfying the property that $a^{n}=e$. Take m to be the least common multiple of all the integers $n(a)$, for $a \in G$. This integer exists because G is finite, and moreover $n(a) \mid m$ for each $a \in G$. Putting $l(a)=m / n(a)$, we see that for each $a \in G$, one has

$$
a^{m}=a^{l(a) n(a)}=\left(a^{n(a)}\right)^{l(a)}=e^{l(a)}=e,
$$

and thus $a^{m}=e$ uniformly for every $a \in G$.
2.1, Q28. Suppose that $x \in G$. Then there exists $y \in G$ so that $y * x=e$, and there exists $z \in G$ so that $z * y=e$. Thus $z *((y * x) * y)=z *(e * y)=z * y=e$, and yet $(z * y) *(x * y)=e *(x * y)=x * y$. Hence, by associativity, we have $x * y=e$. This shows that left inverses are always right inverses. Consequently, we find that $x * e=x *(y * x)=(x * y) * x=e * x=x$. Hence $x * e=x$ for all $x \in G$, which shows that left identities are always right identities. This completes the proof that G is a group.
2.2, Q1. We must show that G contains an identity, and also that each element of G has an inverse. But for each $a \in G$, property (1) shows that there is an $x \in G$ such that $a x=a$, and property (2) shows that there is a $u \in G$ such that $u a=a$. Of course, these elements x and u might depend on a. But if b is any element of G, then there exists $z \in G$ so that $a z=b$, and then $u b=u a z=a z=b$, and there exists $w \in G$ so that $w a=b$, and then $b x=w a x=w a=b$. Thus we see that u and x are left and right inverses for all elements of G. In particular, one has $u=u x=x$, so that there is an element $e=u=x$ which acts as an identity for all elements of G. Observe next that properties (1) and (2) show that for each $a \in G$, there exist $g, h \in G$ for which $a g=e$ and $h a=e$. But then $h=h e=h a g=e g=g$. Thus all elements $a \in G$ possess an inverse element $\left(a^{-1}=g=h\right)$ that acts as an inverse on both left and right.
2.2, Q3. Suppose that $(a b)^{i}=a^{i} b^{i}$ for $i=n, n+1$ and $n+2$. Then one has $(a b)^{n}=a^{n} b^{n}$ and $(a b)^{n+1}=a^{n+1} b^{n+1}$, whence $a^{n+1} b^{n+1}=a b(a b)^{n}=a b a^{n} b^{n}$. By the cancellation property (multiply by a^{-1} on the left and b^{-n} on the right), this shows that $a^{n} b=b a^{n}$. Similarly, one has $a^{n+1} b=b a^{n+1}$. But then $b a^{n+1}=a\left(a^{n} b\right)=a b a^{n}$, so that the cancellation property (multiply by a^{-n} on the right) yields $b a=a b$. Since this relation is presumed to hold for all a and b, we find that G is abelian.
2.2, Q5. Consider arbitrary elements a and b of G, and apply the cancellation property. We have $a(b a)^{2} b=a^{3} b^{3}$, whence $(b a)^{2}=a^{2} b^{2}$. Likewise, we have $a(b a)^{4} b=a^{5} b^{5}$, so that $(b a)^{4}=a^{4} b^{4}$. Hence $a^{4} b^{4}=\left(a^{2} b^{2}\right)\left(a^{2} b^{2}\right)$, and this shows that $a^{2} b^{2}=b^{2} a^{2}$. Since these relations hold for all $a, b \in G$, we can reverse the roles of a and b to obtain $b^{2} a^{2}=(a b)^{2}$, whence $a^{2} b^{2}=b^{2} a^{2}=a b a b$, which in turn shows that $a b=b a$. Since this relation holds for all $a, b \in G$, we have shown that G is abelian.
2.3, Q3. We can write the elements of S_{3} in cycle notation, so that

$$
S_{3}=\{e,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)\}
$$

By Lagrange's theorem, any subgroup of S_{3} must have order dividing $\left|S_{3}\right|=6$, so the possible orders for subgroups are $1,2,3,6$. The only subgroup of order 1 is $\{e\}$, and the only subgroup of order 6 is S_{3} itself. Any subgroup of order 2 must be cyclic, because 2 is prime, and thus we have 3 subgroups of order 2 , namely

$$
H_{1}=\langle(1,2)\rangle, \quad H_{2}=\langle(1,3)\rangle, \quad H_{3}=\langle(2,3)\rangle
$$

Any subgroup containing more than one distinct transposition has order larger than 2, while the 3 -cycles generate a subgroup of order 3, namely

$$
H_{4}=\langle(1,2,3)\rangle=\langle(1,3,2)\rangle=\{e,(1,2,3),(1,3,2)\} .
$$

The only subgroups of order 3 are again cyclic, since 3 is prime, and so cannot contain any transposition (an element of order 2). Thus H_{4} is the only subgroup of order 3. We have therefore shown that the only subgroups of S_{3} are the trivial subgroups $\{e\}$ and S_{3}, three subgroups H_{1}, H_{2} and H_{3} of order 2, and one subgroup H_{4} of order 3. [Of course, one can achieve the same answer without using Lagrange's theorem, by observing that whenever a subgroup contains any two distinct transpositions, then it contains the whole of S_{3}, and likewise if it contains a transposition and a 3 -cycle.]
2.3, Q12. Consider the cyclic group $G=\langle a\rangle=\left\{a^{n}: n \in \mathbb{Z}\right\}$. If one considers any two elements of G, say a^{n} and a^{m} for some integers $m, n \in \mathbb{Z}$, then one finds that $a^{n} a^{m}=a^{n+m}=$ $a^{m+n}=a^{m} a^{n}$. Thus any two elements of G commute, and we see that all cyclic groups are abelian. (Notice that the abelian property of $(\mathbb{Z},+)$ is inherited by $\langle a\rangle$ by virtue of the fact that its elements are defined by the exponent of a).
2.3, Q14. Suppose that G has no proper subgroups, and (by way of deriving a contradiction) assume that G is not cyclic. Since G is not cyclic, it cannot be the trivial group, and so contains an element $a \neq e$. Since G is not cyclic, it is not equal to the cyclic group $\langle a\rangle$, and thus there is an element b of G with $b \notin\langle a\rangle$. But then $\langle a\rangle$ is a subgroup of G which is not equal to either $\{e\}$ or G, and hence is a proper subgroup. So we derive a contradiction, and are forced to conclude that whenever G has no proper subgroups, it is cyclic.
2.3, Q24. We apply the subgroup criterion. If $a, b \in N$, then $a, b \in x^{-1} H x$ for all $x \in G$, whence $x a x^{-1}$ and $x b x^{-1}$ both lie in H for all $x \in G$. But then $\left(x a x^{-1}\right)\left(x b x^{-1}\right)^{-1}=$ $\left(x a x^{-1}\right)\left(x b^{-1} x^{-1}\right)=x a b^{-1} x^{-1} \in H$ for all $x \in G$, whence $a b^{-1} \in x^{-1} H x$ for all $x \in G$. Thus $a b^{-1} \in N$, and by the subgroup criterion, it follows that N is a subgroup of G.

Similarly, if $n \in N$, then $x n x^{-1} \in H$ for all $x \in G$, whence for any given $y \in G$ we have $x\left(y^{-1} n y\right) x^{-1}=\left(x y^{-1}\right) n\left(x y^{-1}\right)^{-1} \in H$ for all $x \in G$. Thus $y^{-1} n y \in N$ for all $y \in G$, whence $y^{-1} N y \subseteq N$ for all $y \in G$. A similar argument shows that $y N y^{-1} \subseteq N$ for all $y \in G$, whence $N \subseteq y^{-1} N y$ for all $y \in G$. Thus indeed $N=y^{-1} N y$ for each $y \in G$.
2.3, Q26. If $H a \cap H b \neq \emptyset$, then there exists some element $g \in G$ with $g \in H a$ and $g \in H b$, say $h_{1} a=g=h_{2} b$ for some $h_{1}, h_{2} \in H$. But then $b=h_{3} a$, with $h_{3}=h_{2}^{-1} h_{1} \in H$. This shows that whenever $h \in H$, one has $h b=h h_{3} a \in H a$, whence $H b \subseteq H a$. Similarly, and by symmetry, one has $H a \subseteq H b$, and thus $H a=H b$. So for all $a, b \in G$, one has either $H a \cap H b=\emptyset$, or $H a=H b$, as required.
2.3, Q29. We have $x^{-1} M x \subseteq M$ for all $x \in G$. Then for all $m \in M$ and all $y \in G$, one has $y^{-1} m y \in M$, say $y^{-1} m y=m_{0}$, for some $m_{0} \in M$ depending on y. Given any $x \in G$, by considering the situation with $y=x^{-1}$, we see that $m=y m_{0} y^{-1}=x^{-1} m_{0} x \in x^{-1} M x$. Then for all $x \in G$, we see that $x^{-1} M x$ contains all elements m of M, that is $M \subseteq$ $x^{-1} M x$. Since we started by assuming that $x^{-1} M x \subseteq M$ for all $x \in G$, we see that in fact $x^{-1} M x=M$ for all $x \in G$.

