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If every right coset of H in G is a left coset of H in G, then for each a € G there is an
b € G such that Ha = bH. Since e € H, one therefore sees that for some h € H one has
b= ha. Thus H = b'Ha = (ha)"'Ha = a*h™*Ha = a 'Ha, whence aHa™' = H.
Since this relation holds for all a € GG, we have established the required relation.

The elements of U;g are integers a with 1 < a < 18 for which a is coprime to both 2
and 3. Thus Uz = {1,5,7,11,13,17}. Of course, the element 1 has order 1. One can
check that

(5)y = (11) ={1,5,7,11,13,17}, (7) = (13) ={1,7,13}, (17) ={1,17},
and so
o(l)=1, o(17)=2, o(7)=0(13) =3, o(5) =o0(11)=6.
In particular, we see that Ug is cyclic, because Uyg = (5).

If G = {ay,...,a,} is an abelian group, we can pair each element a with its inverse
a~!. Since (a7')™! = a, then we can partition G into subsets {a,a™'}. Possibly, one
or more of these disjoint sets might have the property that a = a~!. By relabeling the
elements of G, we may suppose that ay_; = ay;' for 1 < i < r, and that a; = a;l for

2r +1 < j <mn. Thus, if we write x = a; - - - a,,, then we have

T 9 n

2 | | | | 2

T :< agi,1&21> aj.
=1

j=2r+1

But ag;_1a0; = e for 1 < i < r, and a? =c for 2r +1 < 57 < n, so all terms in both
products are equal to e. Hence 2% = e, as required.

We apply the method of problem 16 in the case G = U,. The problem itself shows
that ((p —1)!)> =1 (mod p). However, if 2> =1 (mod p), we have (z — 1)(xz +1) =0
(mod p), and thus x — 1 = 0 (mod p) or x +1 = 0 (mod p). Thus x = £1 (mod p).
Hence (p — 1)! = £1 (mod p). To distinguish the choice of sign, observe that 1 and
p — 1 are the only self-inverse elements of U,. Thus, when p is odd, the elements
2,3,...,p—2 can be partitioned into pairs a, b, where ab =1 (mod p) and a # b. Thus

p—D'=@pE-1)-(p—2)-(p—3)---2)=p—1=—1 (mod p).

We may assume that whenever aH = bH, one has Ha = Hb, in G. Given a € G and
h € H, observe that aH = ahH, whence the hypothesis shows that Ha = Hah. From
the latter, there exists b’ € H so that ah = h'a and hence aha™' = h/ € H. Since this
relation holds for all h € H, it follows that aHa~! C H. Again, this holds for all a € G,
so replacing a by a~! we obtain a"'Ha C H, and thus H C aHa'. We therefore
conclude that aHa™! = H for all a € G, as required.

Use the division algorithm to write s = ¢gm + r, where ¢ € Z and 0 < r < m. Then
we have e = a® = a9 = (a™)%". But o(a) = m, so a™ = e, whence e = a". But
0 < r < m, so the hypothesis that o(a) = m implies that » = 0, and hence s = gm.
Thus m|s.
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Suppose that G is a finite cyclic group of order n, so that G = (a) for some element
a € G having order n. The elements of G are the elements e,a,a?,...,a"'. Suppose
that a” has order m. Since e = (a")™ = a"™, we must have n|rm, so that r is a multiple
of n/m, say r = In/m for some integer [ with 0 <[ < m. But a'™™ has order m if and
only if the smallest positive integer k for which (a/™/™)* = e is m. However, this holds
if and only if the smallest positive integer k for which lk/m is an integer is m. Thus a”
has order m if and only if (I,m) = 1. Thus the number of elements of G having order
m is given by the number of integers [ with 0 <[ < m and (I,m) = 1, namely ¢(m).

(a) The identity mapping id : G5 — G with g — g gives a trivial isomorphism from G,
to G1, whence G1 = G;.

(b) If G; = G, then there is a bijective homomorphism ¢ : G; — Gs. Since ¢ is
bijective, it has an inverse mapping ¢! : Gy — G, which is also bijective. Moreover,
since ¢ is surjective, whenever go, ha € G, there exist g;, hy € Gy with ¢(g1) = g2 and
©(h1) = hy. Hence, using the homomorphism property of ¢, we obtain

e g2 (ha) = (¢ o p(g1)) (¢ 0 p(hy)) = g1l
= op(giht) = ¢ (e(g1)e(h)) = ¢ (gaha).

Since this relation holds for all gy, hy € G5, we see that ¢! is a homomorphism as well
as being bijective, and hence ¢! : Gy — G is an isomorphism. Thus Gy = G|.

(c) If G; = G5 and Gy = (3, then there exist bijective homomorphisms ¢ : G; — Gy
and ¢ : Gy — (G3. Consider the map ¥ o ¢ : G; — G3. Since ¢ and ¢ are each
bijective, we have that i o ¢ is also bijective. Moreover, for each g, h € G, if we use
the homomorphism properties of ¢ and 1, we obtain

Yo p(gh) = P(p(g)p(h) = P(p(g)Y(e(h) = (¥ o w(g)) (¥ o @(h)).

Since this relation holds for all g, h € G, we see that ¢ o ¢ is a homomorphism as well
as being bijective, and hence ¥ o ¢ : Gy — (G5 is an isomorphism. Thus G| = G3.

We show that when ¢ : G — G’ is a homomorphism of groups, then ¢(G) < G'. To
confirm this, observe first that ¢(e) = ¢/, where e and €’ are the respective identities of
G and G'. For we have p(x) = ¢(xe) = ¢(x)p(e), whence p(e) = € by cancellation.
Hence, also, for every a € G one has ¢ = p(e) = p(aa™t) = p(a)p(a™t), whence
o(a™) = ¢(a)~!. Finally, whenever a,b € G, we have

p(a)p(b) ™ = pla)p(b™") = p(ab™") € (G).
Thus, for all g, h € ¢(G), we have gh™! € p(G), so ¢(G) < G’ by the subgroup criterion.

We show that ¢ : G — G’ is a monomorphism of groups if and only if ker(¢) = {e}.
First, plainly, if ker(p) # {e}, then there exists g € ker(y) \ {e}, and so ¢ cannot be a
monomorphism. To see this note that p(g) = € = ¢(e) whilst g # e. So ker(y) must
be trivial if ¢ is to be a monomorphism. On the other hand, if ker(y) is trivial, then
whenever ¢(g1) = ¢(g2), one has g; = go. If this were not the case, and for some g; # g2
one has ¢(g1) = ©(g2), then p(g1g; ) = w(91)0(g2) " = (g1)p(g1) ' =€, 50 gy " = ¢
whilst g1 # go, yielding a contradiction. When ker(yp) is trivial, therefore, we see that
© is injective, and hence a monomorphism.



