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2.4, Q8. If every right coset of H in G is a left coset of H in G, then for each a ∈ G there is an
b ∈ G such that Ha = bH. Since e ∈ H, one therefore sees that for some h ∈ H one has
b = ha. Thus H = b−1Ha = (ha)−1Ha = a−1h−1Ha = a−1Ha, whence aHa−1 = H.
Since this relation holds for all a ∈ G, we have established the required relation.

2.4, Q13. The elements of U18 are integers a with 1 ≤ a < 18 for which a is coprime to both 2
and 3. Thus U18 = {1, 5, 7, 11, 13, 17}. Of course, the element 1 has order 1. One can
check that

〈5〉 = 〈11〉 = {1, 5, 7, 11, 13, 17}, 〈7〉 = 〈13〉 = {1, 7, 13}, 〈17〉 = {1, 17},

and so

o(1) = 1, o(17) = 2, o(7) = o(13) = 3, o(5) = o(11) = 6.

In particular, we see that U18 is cyclic, because U18 = 〈5〉.

2.4, Q16. If G = {a1, . . . , an} is an abelian group, we can pair each element a with its inverse
a−1. Since (a−1)−1 = a, then we can partition G into subsets {a, a−1}. Possibly, one
or more of these disjoint sets might have the property that a = a−1. By relabeling the
elements of G, we may suppose that a2i−1 = a−12i for 1 ≤ i ≤ r, and that aj = a−1j for
2r + 1 ≤ j ≤ n. Thus, if we write x = a1 · · · an, then we have

x2 =
( r∏
i=1

a2i−1a2i

)2 n∏
j=2r+1

a2j .

But a2i−1a2i = e for 1 ≤ i ≤ r, and a2j = e for 2r + 1 ≤ j ≤ n, so all terms in both

products are equal to e. Hence x2 = e, as required.

2.4, Q18. We apply the method of problem 16 in the case G = Up. The problem itself shows
that ((p− 1)!)2 ≡ 1 (mod p). However, if x2 ≡ 1 (mod p), we have (x− 1)(x + 1) ≡ 0
(mod p), and thus x − 1 ≡ 0 (mod p) or x + 1 ≡ 0 (mod p). Thus x ≡ ±1 (mod p).
Hence (p − 1)! ≡ ±1 (mod p). To distinguish the choice of sign, observe that 1 and
p − 1 are the only self-inverse elements of Up. Thus, when p is odd, the elements
2, 3, . . . , p− 2 can be partitioned into pairs a, b, where ab ≡ 1 (mod p) and a 6= b. Thus
(p− 1)! = (p− 1) · ((p− 2) · (p− 3) · · · 2) ≡ p− 1 ≡ −1 (mod p).

2.4, Q27. We may assume that whenever aH = bH, one has Ha = Hb, in G. Given a ∈ G and
h ∈ H, observe that aH = ahH, whence the hypothesis shows that Ha = Hah. From
the latter, there exists h′ ∈ H so that ah = h′a and hence aha−1 = h′ ∈ H. Since this
relation holds for all h ∈ H, it follows that aHa−1 ⊆ H. Again, this holds for all a ∈ G,
so replacing a by a−1 we obtain a−1Ha ⊆ H, and thus H ⊆ aHa−1. We therefore
conclude that aHa−1 = H for all a ∈ G, as required.

2.4, Q31. Use the division algorithm to write s = qm + r, where q ∈ Z and 0 ≤ r < m. Then
we have e = as = aqm+r = (am)qar. But o(a) = m, so am = e, whence e = ar. But
0 ≤ r < m, so the hypothesis that o(a) = m implies that r = 0, and hence s = qm.
Thus m|s.
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2.4, Q37. Suppose that G is a finite cyclic group of order n, so that G = 〈a〉 for some element
a ∈ G having order n. The elements of G are the elements e, a, a2, . . . , an−1. Suppose
that ar has order m. Since e = (ar)m = arm, we must have n|rm, so that r is a multiple
of n/m, say r = ln/m for some integer l with 0 ≤ l < m. But aln/m has order m if and
only if the smallest positive integer k for which (aln/m)k = e is m. However, this holds
if and only if the smallest positive integer k for which lk/m is an integer is m. Thus ar

has order m if and only if (l,m) = 1. Thus the number of elements of G having order
m is given by the number of integers l with 0 ≤ l < m and (l,m) = 1, namely ϕ(m).

2.5, Q2. (a) The identity mapping id : G1 → G1 with g 7→ g gives a trivial isomorphism from G1

to G1, whence G1
∼= G1.

(b) If G1
∼= G2, then there is a bijective homomorphism ϕ : G1 → G2. Since ϕ is

bijective, it has an inverse mapping ϕ−1 : G2 → G1 which is also bijective. Moreover,
since ϕ is surjective, whenever g2, h2 ∈ G2, there exist g1, h1 ∈ G1 with ϕ(g1) = g2 and
ϕ(h1) = h2. Hence, using the homomorphism property of ϕ, we obtain

ϕ−1(g2)ϕ
−1(h2) = (ϕ−1 ◦ ϕ(g1))(ϕ

−1 ◦ ϕ(h1)) = g1h1

= ϕ−1 ◦ ϕ(g1h1) = ϕ−1(ϕ(g1)ϕ(h1)) = ϕ−1(g2h2).

Since this relation holds for all g2, h2 ∈ G2, we see that ϕ−1 is a homomorphism as well
as being bijective, and hence ϕ−1 : G2 → G1 is an isomorphism. Thus G2

∼= G1.
(c) If G1

∼= G2 and G2
∼= G3, then there exist bijective homomorphisms ϕ : G1 → G2

and ψ : G2 → G3. Consider the map ψ ◦ ϕ : G1 → G3. Since ϕ and ψ are each
bijective, we have that ψ ◦ ϕ is also bijective. Moreover, for each g, h ∈ G1, if we use
the homomorphism properties of ϕ and ψ, we obtain

ψ ◦ ϕ(gh) = ψ(ϕ(g)ϕ(h)) = ψ(ϕ(g))ψ(ϕ(h)) = (ψ ◦ ϕ(g))(ψ ◦ ϕ(h)).

Since this relation holds for all g, h ∈ G1, we see that ψ ◦ ϕ is a homomorphism as well
as being bijective, and hence ψ ◦ ϕ : G1 → G3 is an isomorphism. Thus G1

∼= G3.

2.5, Q6. We show that when ϕ : G → G′ is a homomorphism of groups, then ϕ(G) ≤ G′. To
confirm this, observe first that ϕ(e) = e′, where e and e′ are the respective identities of
G and G′. For we have ϕ(x) = ϕ(xe) = ϕ(x)ϕ(e), whence ϕ(e) = e′ by cancellation.
Hence, also, for every a ∈ G one has e′ = ϕ(e) = ϕ(aa−1) = ϕ(a)ϕ(a−1), whence
ϕ(a−1) = ϕ(a)−1. Finally, whenever a, b ∈ G, we have

ϕ(a)ϕ(b)−1 = ϕ(a)ϕ(b−1) = ϕ(ab−1) ∈ ϕ(G).

Thus, for all g, h ∈ ϕ(G), we have gh−1 ∈ ϕ(G), so ϕ(G) ≤ G′ by the subgroup criterion.

2.5, Q7. We show that ϕ : G → G′ is a monomorphism of groups if and only if ker(ϕ) = {e}.
First, plainly, if ker(ϕ) 6= {e}, then there exists g ∈ ker(ϕ) \ {e}, and so ϕ cannot be a
monomorphism. To see this note that ϕ(g) = e′ = ϕ(e) whilst g 6= e. So ker(ϕ) must
be trivial if ϕ is to be a monomorphism. On the other hand, if ker(ϕ) is trivial, then
whenever ϕ(g1) = ϕ(g2), one has g1 = g2. If this were not the case, and for some g1 6= g2
one has ϕ(g1) = ϕ(g2), then ϕ(g1g

−1
2 ) = ϕ(g1)ϕ(g2)

−1 = ϕ(g1)ϕ(g1)
−1 = e′, so g1g

−1
2 = e

whilst g1 6= g2, yielding a contradiction. When ker(ϕ) is trivial, therefore, we see that
ϕ is injective, and hence a monomorphism.


