HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 3

2.4, Q8. If every right coset of H in G is a left coset of H in G, then for each $a \in G$ there is an $b \in G$ such that $H a=b H$. Since $e \in H$, one therefore sees that for some $h \in H$ one has $b=h a$. Thus $H=b^{-1} H a=(h a)^{-1} H a=a^{-1} h^{-1} H a=a^{-1} H a$, whence $a H a^{-1}=H$. Since this relation holds for all $a \in G$, we have established the required relation.
2.4, Q13. The elements of U_{18} are integers a with $1 \leq a<18$ for which a is coprime to both 2 and 3. Thus $U_{18}=\{1,5,7,11,13,17\}$. Of course, the element 1 has order 1 . One can check that

$$
\langle 5\rangle=\langle 11\rangle=\{1,5,7,11,13,17\}, \quad\langle 7\rangle=\langle 13\rangle=\{1,7,13\}, \quad\langle 17\rangle=\{1,17\},
$$

and so

$$
o(1)=1, \quad o(17)=2, \quad o(7)=o(13)=3, \quad o(5)=o(11)=6 .
$$

In particular, we see that U_{18} is cyclic, because $U_{18}=\langle 5\rangle$.
2.4, Q16. If $G=\left\{a_{1}, \ldots, a_{n}\right\}$ is an abelian group, we can pair each element a with its inverse a^{-1}. Since $\left(a^{-1}\right)^{-1}=a$, then we can partition G into subsets $\left\{a, a^{-1}\right\}$. Possibly, one or more of these disjoint sets might have the property that $a=a^{-1}$. By relabeling the elements of G, we may suppose that $a_{2 i-1}=a_{2 i}^{-1}$ for $1 \leq i \leq r$, and that $a_{j}=a_{j}^{-1}$ for $2 r+1 \leq j \leq n$. Thus, if we write $x=a_{1} \cdots a_{n}$, then we have

$$
x^{2}=\left(\prod_{i=1}^{r} a_{2 i-1} a_{2 i}\right)^{2} \prod_{j=2 r+1}^{n} a_{j}^{2} .
$$

But $a_{2 i-1} a_{2 i}=e$ for $1 \leq i \leq r$, and $a_{j}^{2}=e$ for $2 r+1 \leq j \leq n$, so all terms in both products are equal to e. Hence $x^{2}=e$, as required.
2.4, Q18. We apply the method of problem 16 in the case $G=U_{p}$. The problem itself shows that $((p-1)!)^{2} \equiv 1(\bmod p)$. However, if $x^{2} \equiv 1(\bmod p)$, we have $(x-1)(x+1) \equiv 0$ $(\bmod p)$, and thus $x-1 \equiv 0(\bmod p)$ or $x+1 \equiv 0(\bmod p)$. Thus $x \equiv \pm 1(\bmod p)$. Hence $(p-1)!\equiv \pm 1(\bmod p)$. To distinguish the choice of sign, observe that 1 and $p-1$ are the only self-inverse elements of U_{p}. Thus, when p is odd, the elements $2,3, \ldots, p-2$ can be partitioned into pairs a, b, where $a b \equiv 1(\bmod p)$ and $a \neq b$. Thus $(p-1)!=(p-1) \cdot((p-2) \cdot(p-3) \cdots 2) \equiv p-1 \equiv-1(\bmod p)$.
2.4, Q27. We may assume that whenever $a H=b H$, one has $H a=H b$, in G. Given $a \in G$ and $h \in H$, observe that $a H=a h H$, whence the hypothesis shows that $H a=H a h$. From the latter, there exists $h^{\prime} \in H$ so that $a h=h^{\prime} a$ and hence $a h a^{-1}=h^{\prime} \in H$. Since this relation holds for all $h \in H$, it follows that $a H a^{-1} \subseteq H$. Again, this holds for all $a \in G$, so replacing a by a^{-1} we obtain $a^{-1} H a \subseteq H$, and thus $H \subseteq a H a^{-1}$. We therefore conclude that $a \mathrm{Ha}^{-1}=H$ for all $a \in G$, as required.
2.4, Q31. Use the division algorithm to write $s=q m+r$, where $q \in \mathbb{Z}$ and $0 \leq r<m$. Then we have $e=a^{s}=a^{q m+r}=\left(a^{m}\right)^{q} a^{r}$. But $o(a)=m$, so $a^{m}=e$, whence $e=a^{r}$. But $0 \leq r<m$, so the hypothesis that $o(a)=m$ implies that $r=0$, and hence $s=q m$. Thus $m \mid s$.
2.4, Q37. Suppose that G is a finite cyclic group of order n, so that $G=\langle a\rangle$ for some element $a \in G$ having order n. The elements of G are the elements $e, a, a^{2}, \ldots, a^{n-1}$. Suppose that a^{r} has order m. Since $e=\left(a^{r}\right)^{m}=a^{r m}$, we must have $n \mid r m$, so that r is a multiple of n / m, say $r=\ln / m$ for some integer l with $0 \leq l<m$. But $a^{l n / m}$ has order m if and only if the smallest positive integer k for which $\left(a^{l n / m}\right)^{k}=e$ is m. However, this holds if and only if the smallest positive integer k for which $l k / m$ is an integer is m. Thus a^{r} has order m if and only if $(l, m)=1$. Thus the number of elements of G having order m is given by the number of integers l with $0 \leq l<m$ and $(l, m)=1$, namely $\varphi(m)$.
2.5, Q2. (a) The identity mapping id : $G_{1} \rightarrow G_{1}$ with $g \mapsto g$ gives a trivial isomorphism from G_{1} to G_{1}, whence $G_{1} \cong G_{1}$.
(b) If $G_{1} \cong G_{2}$, then there is a bijective homomorphism $\varphi: G_{1} \rightarrow G_{2}$. Since φ is bijective, it has an inverse mapping $\varphi^{-1}: G_{2} \rightarrow G_{1}$ which is also bijective. Moreover, since φ is surjective, whenever $g_{2}, h_{2} \in G_{2}$, there exist $g_{1}, h_{1} \in G_{1}$ with $\varphi\left(g_{1}\right)=g_{2}$ and $\varphi\left(h_{1}\right)=h_{2}$. Hence, using the homomorphism property of φ, we obtain

$$
\begin{aligned}
\varphi^{-1}\left(g_{2}\right) \varphi^{-1}\left(h_{2}\right) & =\left(\varphi^{-1} \circ \varphi\left(g_{1}\right)\right)\left(\varphi^{-1} \circ \varphi\left(h_{1}\right)\right)=g_{1} h_{1} \\
& =\varphi^{-1} \circ \varphi\left(g_{1} h_{1}\right)=\varphi^{-1}\left(\varphi\left(g_{1}\right) \varphi\left(h_{1}\right)\right)=\varphi^{-1}\left(g_{2} h_{2}\right)
\end{aligned}
$$

Since this relation holds for all $g_{2}, h_{2} \in G_{2}$, we see that φ^{-1} is a homomorphism as well as being bijective, and hence $\varphi^{-1}: G_{2} \rightarrow G_{1}$ is an isomorphism. Thus $G_{2} \cong G_{1}$.
(c) If $G_{1} \cong G_{2}$ and $G_{2} \cong G_{3}$, then there exist bijective homomorphisms $\varphi: G_{1} \rightarrow G_{2}$ and $\psi: G_{2} \rightarrow G_{3}$. Consider the map $\psi \circ \varphi: G_{1} \rightarrow G_{3}$. Since φ and ψ are each bijective, we have that $\psi \circ \varphi$ is also bijective. Moreover, for each $g, h \in G_{1}$, if we use the homomorphism properties of φ and ψ, we obtain

$$
\psi \circ \varphi(g h)=\psi(\varphi(g) \varphi(h))=\psi(\varphi(g)) \psi(\varphi(h))=(\psi \circ \varphi(g))(\psi \circ \varphi(h)) .
$$

Since this relation holds for all $g, h \in G_{1}$, we see that $\psi \circ \varphi$ is a homomorphism as well as being bijective, and hence $\psi \circ \varphi: G_{1} \rightarrow G_{3}$ is an isomorphism. Thus $G_{1} \cong G_{3}$.
2.5, Q6. We show that when $\varphi: G \rightarrow G^{\prime}$ is a homomorphism of groups, then $\varphi(G) \leq G^{\prime}$. To confirm this, observe first that $\varphi(e)=e^{\prime}$, where e and e^{\prime} are the respective identities of G and G^{\prime}. For we have $\varphi(x)=\varphi(x e)=\varphi(x) \varphi(e)$, whence $\varphi(e)=e^{\prime}$ by cancellation. Hence, also, for every $a \in G$ one has $e^{\prime}=\varphi(e)=\varphi\left(a a^{-1}\right)=\varphi(a) \varphi\left(a^{-1}\right)$, whence $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$. Finally, whenever $a, b \in G$, we have

$$
\varphi(a) \varphi(b)^{-1}=\varphi(a) \varphi\left(b^{-1}\right)=\varphi\left(a b^{-1}\right) \in \varphi(G)
$$

Thus, for all $g, h \in \varphi(G)$, we have $g h^{-1} \in \varphi(G)$, so $\varphi(G) \leq G^{\prime}$ by the subgroup criterion.
2.5, Q7. We show that $\varphi: G \rightarrow G^{\prime}$ is a monomorphism of groups if and only if $\operatorname{ker}(\varphi)=\{e\}$. First, plainly, if $\operatorname{ker}(\varphi) \neq\{e\}$, then there exists $g \in \operatorname{ker}(\varphi) \backslash\{e\}$, and so φ cannot be a monomorphism. To see this note that $\varphi(g)=e^{\prime}=\varphi(e)$ whilst $g \neq e$. So $\operatorname{ker}(\varphi)$ must be trivial if φ is to be a monomorphism. On the other hand, if $\operatorname{ker}(\varphi)$ is trivial, then whenever $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)$, one has $g_{1}=g_{2}$. If this were not the case, and for some $g_{1} \neq g_{2}$ one has $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)$, then $\varphi\left(g_{1} g_{2}^{-1}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)^{-1}=\varphi\left(g_{1}\right) \varphi\left(g_{1}\right)^{-1}=e^{\prime}$, so $g_{1} g_{2}^{-1}=e$ whilst $g_{1} \neq g_{2}$, yielding a contradiction. When $\operatorname{ker}(\varphi)$ is trivial, therefore, we see that φ is injective, and hence a monomorphism.

