HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 4

2.5, Q12. Whenever $z \in Z(G)$ and $g \in G$, one has $z g=g z$, and hence $g^{-1} z g=\left(g^{-1} g\right) z=z$, whence $g^{-1} Z(G) g \subseteq Z(G)$ for each $g \in G$. Thus $Z(G) \triangleleft G$, as required.
2.5, Q15. Suppose that $N \triangleleft G$ and $\varphi: G \rightarrow G^{\prime}$ is a surjective homomorphism. Since N is itself a group, we know (Lemma 2.5.3) that $\varphi(N)$ is a subgroup of G^{\prime}. By the surjectivity of φ, whenever $g \in G^{\prime}$ and $n \in \varphi(N)$, there exists $a \in G$ and $b \in N$ with the property that $\varphi(a)=g$ and $\varphi(b)=n$. Thus, we have $g^{-1} n g=\varphi(a)^{-1} \varphi(b) \varphi(a)=\varphi\left(a^{-1}\right) \varphi(b) \varphi(a)=$ $\varphi\left(a^{-1} b a\right)$. But since $N \triangleleft G$, we have $a^{-1} b a \in N$, and thus $g^{-1} \varphi(N) g \subseteq \varphi(N)$. Hence $\varphi(N) \triangleleft G^{\prime}$, as required.
2.5, Q20. Since $M \triangleleft G$, for each $m \in M$ and each $n \in N \subseteq G$, one has $n^{-1} m n \in M$, whence $m^{-1} n^{-1} m n \in M$. Also, since $N \triangleleft G$, for each $n \in N$ and each $m \in M \subseteq G$, one has $m^{-1} n^{-1} m \in N$, whence $m^{-1} n^{-1} m n \in N$. Thus, one has $m^{-1} n^{-1} m n \in M \cap N=\{e\}$. Hence we conclude that $m^{-1} n^{-1} m n=e$, whence $m n=n m$ for all $m \in M$ and $n \in N$.
2.5, Q26. Define $\psi: G \rightarrow A(G)$ by $\psi(a)=\sigma_{a}$ for $a \in G$, where $\sigma_{a}(g)=a g a^{-1}$ for all $g \in G$.
(a) For all $a, b \in G$, one has $\psi(a b)=\sigma_{a b}$, where $\sigma_{a b}(g)=a b g(a b)^{-1}=a\left(b g b^{-1}\right) a^{-1}=$ $\sigma_{a}\left(\sigma_{b}(g)\right)$, for all $g \in G$. Thus $\sigma_{a b}=\sigma_{a} \circ \sigma_{b}=\psi(a) \circ \psi(b)$, and hence $\psi(a b)=\psi(a) \psi(b)$ for all $a, b \in G$. So ψ is indeed a homomorphism from G into $A(G)$, as required.
(b) One has $\operatorname{ker}(\psi)=\{a \in G: \psi(a)=\mathrm{id}\}=\left\{a \in G: \sigma_{a}(g)=g\right.$ for all $\left.g \in G\right\}=\{a \in$ $G: a g a^{-1}=g$ for all $\left.g \in G\right\}=\{a \in G: a g=g a$ for all $g \in G\}=Z(G)$.
2.5, Q34. The group $A(G)$ of bijective self-maps of G discussed in Q26 has a subgroup $\mathcal{A}(G)$ consisting of all the automorphisms of G (that is, bijective self-maps that are also homomorphisms). Let $I(G)=\left\{\sigma_{a}: a \in G\right\}$, where $\sigma_{a}(g)=a g a^{-1}$ for all $g \in G$. If $\varphi \in \mathcal{A}(G)$ and $\sigma_{a} \in I(G)$, then the map $\varphi^{-1} \sigma_{a} \varphi$ is the automorphism satisfying the property that for all $g \in G$, one has $\left(\varphi^{-1} \sigma_{a} \varphi\right)(g)=\varphi^{-1}\left(\sigma_{a}(\varphi(g))\right)=\varphi^{-1}\left(a \varphi(g) a^{-1}\right)$. Since φ, and hence also φ^{-1}, is a homomorphism, however, the latter is equal to $\varphi^{-1}(a) \varphi^{-1}(\varphi(g)) \varphi^{-1}(a)^{-1}=h g h^{-1}$, in which we write $h=\varphi^{-1}(a)$. But then, for all $g \in G$, we have $\left(\varphi^{-1} \sigma_{a} \varphi\right)(g)=h g h^{-1}=\sigma_{h}(g)$, whence $\varphi^{-1} \sigma_{a} \varphi=\sigma_{h} \in I(G)$. Since this relation holds for all $\sigma_{a} \in I(G)$, we see that for all $\varphi \in \mathcal{A}(G)$ we have $\varphi^{-1} I(G) \varphi \subseteq I(G)$, so that $I(G) \triangleleft \mathcal{A}(G)$.
2.5, Q40. Suppose that G is a finite group of order n, and $H \leq G$ satisfies $n \nmid i_{G}(H)$!. Let $A(S)$ denote the group of bijective self-mappings of the set $S=\{H a: a \in G\}$. Since $|S|=|G| /|H|=i_{G}(H)$, and $A(S)$ is a group of permutations of S, it follows that $|A(S)|=i_{G}(H)$!. We define a $\operatorname{map} \varphi: G \rightarrow A(S)$ by $g \mapsto T_{g}$, where $T_{g}(H a)=H a g^{-1}$ for each right coset $H a$. We claim that this mapping is a homomorphism of groups. The mapping is plainly well-defined, and when $g, h \in G$ one has $(g h)^{-1}=h^{-1} g^{-1}$, so $\varphi(g h)=T_{g h}=T_{g} \circ T_{h}=\varphi(g) \circ \varphi(h)$. Hence φ possesses the homomorphism property. Moreover, one has that $\operatorname{ker}(\varphi)$ is a normal subgroup of G (Theorem 2.5.5). Suppose for the moment that $\operatorname{ker}(\varphi)$ is trivial and is equal to $\{\mathrm{id}\}$ in $A(S)$. Then the mapping φ is injective, and hence the group $\varphi(G)$ has order $|G|=n$. But $\varphi(G)$ is a subgroup of $A(S)$, and hence Lagrange's theorem shows that $|\varphi(G)|=n$ divides $|A(S)|=i_{G}(H)$!. This conclusion contradicts our initial hypothesis, $\operatorname{so} \operatorname{ker}(\varphi)$ cannot be trivial. Hence $\operatorname{ker}(\varphi)$ is a normal subgroup of G which is not equal to the trivial group $\{e\}$. In fact, one has $\operatorname{ker}(\varphi)=\left\{g \in G: T_{g}=\mathrm{id}\right\}=\left\{g \in G: H a g^{-1}=H a\right.$ for all $\left.a \in G\right\}$. Thus, if we take
$a=e$ in the last relation, we see that $\operatorname{ker}(\varphi) \subseteq\left\{g \in G: g^{-1} \in H\right\}=H$. We therefore conclude that $\operatorname{ker}(\varphi)$ is a normal subgroup of G not equal to $\{e\}$ and contained in H.
2.5, Q44. Suppose that G is a group of order p^{2}, with p a prime number. By Lagrange's theorem, any subgroup of G has order dividing $|G|=p^{2}$, and thus if $a \in G$ is not the identity element, then the order of a is either p or p^{2}. In the latter case, the element a^{p} has order p^{2}. Thus, in either case, the group G contains an element b of order p, and hence a subgroup $H=\langle b\rangle$ of order p. One then has $i_{G}(H)=|G| /|H|=p^{2} / p=p$. Observe that $p^{2} \nmid p$!, and hence $|G|$ does not divide $i_{G}(H)$!. We thus deduce from the conclusion of Q40 that there is a normal subgroup $N \neq\{e\}$ of G contained in H. But H has order p a prime, so has no proper subgroups, and thus $N=H$. Hence $H \triangleleft G$, and G has a normal subgroup H of order p.
2.6, Q7. Suppose that G is a cyclic group, say $G=\langle a\rangle$, and N is a subgroup of G. Since G is cyclic, and hence abelian, we have $N \triangleleft G$. But then we can examine the group G / N and observe that $\langle N a\rangle=\left\{N a^{j}: j \in \mathbb{Z}\right\}=\{N b: b \in G\}=G / N$. Thus $G / N=\langle N a\rangle$ is cyclic, as required.
2.6, Q11. Suppose that G is a group satisfying the property that $G / Z(G)$ is cyclic, say $G / Z(G)=$ $\langle Z(G) a\rangle=\left\{Z(G) a^{j}: j \in \mathbb{Z}\right\}$. Consider two elements $g, h \in G$. For some integers j and k, one has $g \in Z(G) a^{j}$ and $h \in Z(G) a^{k}$. Hence, there exist $z_{1}, z_{2} \in Z(G)$ for which $g=z_{1} a^{j}$ and $h=z_{2} a^{k}$. Notice that from the definition of $Z(G)$, the elements z_{1} and z_{2} commute with all elements of G. In particular, one sees that $g h=\left(z_{1} a^{j}\right)\left(z_{2} a^{k}\right)=$ $\left(z_{1} z_{2}\right) a^{j+k}=\left(z_{2} z_{1}\right) a^{k+j}=\left(z_{2} a^{k}\right)\left(z_{1} a^{j}\right)=h g$. Since this relation holds for all $g, h \in G$, we are forced to conclude that G is abelian.
2.6, Q13. Suppose that G is a group, and $N \triangleleft G$ satisfies the property that for all $a, b \in G$, one has $a b a^{-1} b^{-1} \in N$. Consider two elements $N g, N h \in G / N$. One has

$$
(N g)(N h)(N g)^{-1}(N h)^{-1}=(N g)(N h)\left(N g^{-1}\right)\left(N h^{-1}\right)=N\left(g h g^{-1} h^{-1}\right) \in N .
$$

Thus $(N g)(N h)(N g)^{-1}(N h)^{-1}=N e$, so that $(N g)(N h)=(N h)(N g)$. Since this relation holds for all $N g, N h \in G / N$, we conclude that G / N is abelian.
2.6, Q14. Suppose that G is an abelian group of order $n=p_{1} p_{2} \cdots p_{k}$, where the p_{i} are distinct primes. It follows from Cauchy's theorem that for each i, since p_{i} divides $|G|$, then the group G has an element a_{i} of order p_{i}. Consider the element $b=a_{1} a_{2} \cdots a_{k}$. Suppose that r is the least positive integer for which $b^{r}=e$. If we write n_{i} for the integer n / p_{i} for each i, and observe that n_{i} is divisible by p_{j} for all $j \neq i$, we see that $\left(a_{j}^{p_{j}}\right)^{r n_{i} / p_{j}}=e$ for each integer $j \neq i$. Thus $e=\left(b^{r}\right)^{n_{i}}=a_{i}^{r n_{i}}$ for each i, whence $p_{i} \mid r n_{i}$ for each i. But $p_{i} \nmid n_{i}$, so $p_{i} \mid r$ for each i. Consequently, we find that r must be divisible by $p_{1} p_{2} \cdots p_{k}=n$. But then the subgroup $\langle b\rangle$ has order at least $n=|G|$, whence $G=\langle b\rangle$ must be cyclic.
2.6, Q15. Suppose that G is an abelian group having one element a of order m, and another element b of order n, with $(m, n)=1$. Suppose that r is a positive integer for which $(a b)^{r}=e$. Then $e=\left((a b)^{r}\right)^{m}=\left(a^{m}\right)^{r} b^{r m}=e^{r} b^{r m}=b^{r m}$. But since the order of b is n and $b^{r m}=e$, we must have $n \mid(r m)$, and since $(m, n)=1$, this implies that $n \mid r$. Similarly, and symmetrically, we deduce from the relation $e=\left((a b)^{r}\right)^{n}$ that $m \mid r$. Thus, since $(m, n)=1$ and both m and n divide r, we must have $(m n) \mid r$. Then since $(a b)^{m n}=\left(a^{m}\right)^{n}\left(b^{n}\right)^{m}=e$, it follows that r is the smallest positive integer with the property that $(a b)^{r}=e$, and thus the order of $a b$ is $m n$, as claimed.

