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Whenever z € Z(G) and g € G, one has zg = gz, and hence g 'zg = (¢7'g)z = z,
whence ¢7'Z(G)g C Z(G) for each g € G. Thus Z(G) < G, as required.

Suppose that N <1 G and ¢ : G — G’ is a surjective homomorphism. Since N is itself a
group, we know (Lemma 2.5.3) that ¢(/N) is a subgroup of G’. By the surjectivity of ¢,
whenever g € G' and n € ¢(N), there exists a € G and b € N with the property that
¢(a) = g and @(b) = n. Thus, we have g~ 'ng = p(a) 'p(b)p(a) = v(a™")p(b)p(a) =
¢(a"'ba). But since N <1 G, we have a 'ba € N, and thus g '¢(N)g C »(N). Hence
©(N) < G, as required.

Since M <1 G, for each m € M and each n € N C G, one has n~'mn € M, whence
m~n"'mn € M. Also, since N < G, for each n € N and each m € M C G, one has
m~'n"'m € N, whence m~'n"'mn € N. Thus, one has m™'n"'mn € M NN = {e}.
Hence we conclude that m~'n~!'mn = e, whence mn = nm for allm € M and n € N.

Define ¢ : G — A(G) by 9¥(a) = o, for a € G, where 0,(g) = aga™! for all g € G.

(a) For all a,b € G, one has 1)(ab) = 04, where o4(g) = abg(ab)™ = a(bgb™)a™t =
oq(op(g)), for all g € G. Thus o4, = 0, 0 0, = ¥(a) o ¥ (b), and hence ¥ (ab) = ¥ (a)y(b)
for all a,b € G. So v is indeed a homomorphism from G into A(G), as required.

(b) One has ker(¢)) = {a € G : ¢(a) =id} ={a € G : 0,(9) =g forall g € G} = {a €
G:agat=gforallge G} ={a € G:ag=gaforall ge G} =Z(G).

The group A(G) of bijective self-maps of G discussed in (26 has a subgroup A(G)
consisting of all the automorphisms of G (that is, bijective self-maps that are also ho-
momorphisms). Let I(G) = {0, : a € G}, where 0,(g) = aga™ for all ¢ € G. If
v € A(G) and o, € I(GQ), then the map ¢ !0, is the automorphism satisfying the
property that for all g € G, one has (p~'gap)(9) = ¢ (0a((9))) = ¢ (ap(g)a™).
Since ¢, and hence also ¢!, is a homomorphism, however, the latter is equal to
o Ha)p ™ (w(g))et(a)™! = hgh™!, in which we write h = ¢~ '(a). But then, for all
g € G, we have (¢~ 1o,0)(g) = hgh™' = o4(g), whence p~lo,0 = 03, € I(G). Since this
relation holds for all o, € I(G), we see that for all ¢ € A(G) we have p~'I(G)p C I(G),
so that I(G) < A(G).

Suppose that G is a finite group of order n, and H < G satisfies n { ig(H)!. Let
A(S) denote the group of bijective self-mappings of the set S = {Ha : a € G}. Since
|S| = |G|/|H| = ic(H), and A(S) is a group of permutations of S, it follows that
|A(S)| = ic(H)!. We define a map ¢ : G — A(S) by g — T,, where T,(Ha) = Hag™!
for each right coset Ha. We claim that this mapping is a homomorphism of groups.
The mapping is plainly well-defined, and when g,h € G one has (gh)™' = h7lg7!, so
o(gh) =Ty, =T, 0T, = ¢(g) o p(h). Hence ¢ possesses the homomorphism property.
Moreover, one has that ker(y) is a normal subgroup of G (Theorem 2.5.5). Suppose for
the moment that ker(yp) is trivial and is equal to {id} in A(S). Then the mapping ¢ is
injective, and hence the group ¢(G) has order |G| = n. But ¢(G) is a subgroup of A(S),
and hence Lagrange’s theorem shows that |p(G)| = n divides |A(S)| = i¢(H)!. This
conclusion contradicts our initial hypothesis, so ker(y) cannot be trivial. Hence ker(y)
is a normal subgroup of G which is not equal to the trivial group {e}. In fact, one has
ker(p) ={g € G: T, =1d} ={g € G : Hag™' = Ha for all a € G}. Thus, if we take
1
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a = e in the last relation, we see that ker(p) C {g € G : g7' € H} = H. We therefore
conclude that ker(y) is a normal subgroup of G not equal to {e} and contained in H.

Suppose that G is a group of order p?, with p a prime number. By Lagrange’s theorem,
any subgroup of G has order dividing |G| = p?, and thus if a € G is not the identity
element, then the order of a is either p or p?. In the latter case, the element a” has
order p?. Thus, in either case, the group G contains an element b of order p, and hence
a subgroup H = (b) of order p. One then has ig(H) = |G|/|H| = p?/p = p. Observe
that p* f p!, and hence |G| does not divide ig(H)!. We thus deduce from the conclusion
of Q40 that there is a normal subgroup N # {e} of G contained in H. But H has order
p a prime, so has no proper subgroups, and thus N = H. Hence H <1 GG, and G has a
normal subgroup H of order p.

Suppose that G is a cyclic group, say G = (a), and N is a subgroup of G. Since G is
cyclic, and hence abelian, we have N <t G. But then we can examine the group G/N
and observe that (Na) = {Na’ : j € Z} = {Nb:be G} = G/N. Thus G/N = (Na) is
cyclic, as required.

Suppose that G is a group satisfying the property that G/Z(G) is cyclic, say G/Z(G) =
(Z(@Q)a) = {Z(G)d’ : j € Z}. Consider two elements g, h € G. For some integers j and
k, one has ¢ € Z(G)a’ and h € Z(G)a*. Hence, there exist z;,2, € Z(G) for which
g = 216’ and h = za*. Notice that from the definition of Z(G), the elements z; and
7y commute with all elements of G. In particular, one sees that gh = (2107)(20a%) =
(2122)a? T = (2921)a"™7 = (29a")(2107) = hg. Since this relation holds for all g,h € G,
we are forced to conclude that G is abelian.

Suppose that G is a group, and N < G satisfies the property that for all a,b € G, one
has aba='b~' € N. Consider two elements Ng, Nh € G/N. One has

(Ng)(Nh)(Ng) ' (Nh)™" = (Ng)(Nh)(Ng~")(Nh™") = N(ghg~'h™") € N.

Thus (Ng)(Nh)(Ng)~'(Nh)™' = Ne, so that (Ng)(Nh) = (Nh)(Ng). Since this rela-
tion holds for all Ng, Nh € G/N, we conclude that G/N is abelian.

Suppose that G is an abelian group of order n = pips - - - px, where the p; are distinct
primes. It follows from Cauchy’s theorem that for each i, since p; divides |G|, then the
group G has an element a; of order p;. Consider the element b = ajas - - - a,. Suppose
that r is the least positive integer for which b = e. If we write n; for the integer n/p; for
each 4, and observe that n; is divisible by p; for all j # i, we see that (af»j )ilPi = e for
each integer j # i. Thuse = (b")™ = a; " for each i, whence p;|rn; for each i. But p; { n;,
so p;|r for each i. Consequently, we find that » must be divisible by pips - - - pr = n. But
then the subgroup (b) has order at least n = |G|, whence G = (b) must be cyclic.

Suppose that GG is an abelian group having one element a of order m, and another
element b of order n, with (m,n) = 1. Suppose that r is a positive integer for which
(ab)” = e. Then e = ((ab)")™ = (a™)"b'™ = "0 = b"™™. But since the order of
b is n and b = e, we must have n|(rm), and since (m,n) = 1, this implies that
n|r. Similarly, and symmetrically, we deduce from the relation e = ((ab)")™ that m|r.
Thus, since (m,n) = 1 and both m and n divide r, we must have (mn)|r. Then since
(ab)™ = (a™)™(b™)™ = e, it follows that r is the smallest positive integer with the
property that (ab)” = e, and thus the order of ab is mn, as claimed.



