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2.5, Q12. Whenever z ∈ Z(G) and g ∈ G, one has zg = gz, and hence g−1zg = (g−1g)z = z,
whence g−1Z(G)g ⊆ Z(G) for each g ∈ G. Thus Z(G) C G, as required.

2.5, Q15. Suppose that N C G and ϕ : G→ G′ is a surjective homomorphism. Since N is itself a
group, we know (Lemma 2.5.3) that ϕ(N) is a subgroup of G′. By the surjectivity of ϕ,
whenever g ∈ G′ and n ∈ ϕ(N), there exists a ∈ G and b ∈ N with the property that
ϕ(a) = g and ϕ(b) = n. Thus, we have g−1ng = ϕ(a)−1ϕ(b)ϕ(a) = ϕ(a−1)ϕ(b)ϕ(a) =
ϕ(a−1ba). But since N C G, we have a−1ba ∈ N , and thus g−1ϕ(N)g ⊆ ϕ(N). Hence
ϕ(N) C G′, as required.

2.5, Q20. Since M C G, for each m ∈ M and each n ∈ N ⊆ G, one has n−1mn ∈ M , whence
m−1n−1mn ∈ M . Also, since N C G, for each n ∈ N and each m ∈ M ⊆ G, one has
m−1n−1m ∈ N , whence m−1n−1mn ∈ N . Thus, one has m−1n−1mn ∈ M ∩ N = {e}.
Hence we conclude that m−1n−1mn = e, whence mn = nm for all m ∈M and n ∈ N .

2.5, Q26. Define ψ : G→ A(G) by ψ(a) = σa for a ∈ G, where σa(g) = aga−1 for all g ∈ G.
(a) For all a, b ∈ G, one has ψ(ab) = σab, where σab(g) = abg(ab)−1 = a(bgb−1)a−1 =
σa(σb(g)), for all g ∈ G. Thus σab = σa ◦ σb = ψ(a) ◦ ψ(b), and hence ψ(ab) = ψ(a)ψ(b)
for all a, b ∈ G. So ψ is indeed a homomorphism from G into A(G), as required.
(b) One has ker(ψ) = {a ∈ G : ψ(a) = id} = {a ∈ G : σa(g) = g for all g ∈ G} = {a ∈
G : aga−1 = g for all g ∈ G} = {a ∈ G : ag = ga for all g ∈ G} = Z(G).

2.5, Q34. The group A(G) of bijective self-maps of G discussed in Q26 has a subgroup A(G)
consisting of all the automorphisms of G (that is, bijective self-maps that are also ho-
momorphisms). Let I(G) = {σa : a ∈ G}, where σa(g) = aga−1 for all g ∈ G. If
ϕ ∈ A(G) and σa ∈ I(G), then the map ϕ−1σaϕ is the automorphism satisfying the
property that for all g ∈ G, one has (ϕ−1σaϕ)(g) = ϕ−1(σa(ϕ(g))) = ϕ−1(aϕ(g)a−1).
Since ϕ, and hence also ϕ−1, is a homomorphism, however, the latter is equal to
ϕ−1(a)ϕ−1(ϕ(g))ϕ−1(a)−1 = hgh−1, in which we write h = ϕ−1(a). But then, for all
g ∈ G, we have (ϕ−1σaϕ)(g) = hgh−1 = σh(g), whence ϕ−1σaϕ = σh ∈ I(G). Since this
relation holds for all σa ∈ I(G), we see that for all ϕ ∈ A(G) we have ϕ−1I(G)ϕ ⊆ I(G),
so that I(G) C A(G).

2.5, Q40. Suppose that G is a finite group of order n, and H ≤ G satisfies n - iG(H)!. Let
A(S) denote the group of bijective self-mappings of the set S = {Ha : a ∈ G}. Since
|S| = |G|/|H| = iG(H), and A(S) is a group of permutations of S, it follows that
|A(S)| = iG(H)!. We define a map ϕ : G → A(S) by g 7→ Tg, where Tg(Ha) = Hag−1

for each right coset Ha. We claim that this mapping is a homomorphism of groups.
The mapping is plainly well-defined, and when g, h ∈ G one has (gh)−1 = h−1g−1, so
ϕ(gh) = Tgh = Tg ◦ Th = ϕ(g) ◦ ϕ(h). Hence ϕ possesses the homomorphism property.
Moreover, one has that ker(ϕ) is a normal subgroup of G (Theorem 2.5.5). Suppose for
the moment that ker(ϕ) is trivial and is equal to {id} in A(S). Then the mapping ϕ is
injective, and hence the group ϕ(G) has order |G| = n. But ϕ(G) is a subgroup of A(S),
and hence Lagrange’s theorem shows that |ϕ(G)| = n divides |A(S)| = iG(H)!. This
conclusion contradicts our initial hypothesis, so ker(ϕ) cannot be trivial. Hence ker(ϕ)
is a normal subgroup of G which is not equal to the trivial group {e}. In fact, one has
ker(ϕ) = {g ∈ G : Tg = id} = {g ∈ G : Hag−1 = Ha for all a ∈ G}. Thus, if we take
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a = e in the last relation, we see that ker(ϕ) ⊆ {g ∈ G : g−1 ∈ H} = H. We therefore
conclude that ker(ϕ) is a normal subgroup of G not equal to {e} and contained in H.

2.5, Q44. Suppose that G is a group of order p2, with p a prime number. By Lagrange’s theorem,
any subgroup of G has order dividing |G| = p2, and thus if a ∈ G is not the identity
element, then the order of a is either p or p2. In the latter case, the element ap has
order p2. Thus, in either case, the group G contains an element b of order p, and hence
a subgroup H = 〈b〉 of order p. One then has iG(H) = |G|/|H| = p2/p = p. Observe
that p2 - p!, and hence |G| does not divide iG(H)!. We thus deduce from the conclusion
of Q40 that there is a normal subgroup N 6= {e} of G contained in H. But H has order
p a prime, so has no proper subgroups, and thus N = H. Hence H C G, and G has a
normal subgroup H of order p.

2.6, Q7. Suppose that G is a cyclic group, say G = 〈a〉, and N is a subgroup of G. Since G is
cyclic, and hence abelian, we have N C G. But then we can examine the group G/N
and observe that 〈Na〉 = {Naj : j ∈ Z} = {Nb : b ∈ G} = G/N . Thus G/N = 〈Na〉 is
cyclic, as required.

2.6, Q11. Suppose that G is a group satisfying the property that G/Z(G) is cyclic, say G/Z(G) =
〈Z(G)a〉 = {Z(G)aj : j ∈ Z}. Consider two elements g, h ∈ G. For some integers j and
k, one has g ∈ Z(G)aj and h ∈ Z(G)ak. Hence, there exist z1, z2 ∈ Z(G) for which
g = z1a

j and h = z2a
k. Notice that from the definition of Z(G), the elements z1 and

z2 commute with all elements of G. In particular, one sees that gh = (z1a
j)(z2a

k) =
(z1z2)a

j+k = (z2z1)a
k+j = (z2a

k)(z1a
j) = hg. Since this relation holds for all g, h ∈ G,

we are forced to conclude that G is abelian.

2.6, Q13. Suppose that G is a group, and N C G satisfies the property that for all a, b ∈ G, one
has aba−1b−1 ∈ N . Consider two elements Ng,Nh ∈ G/N . One has

(Ng)(Nh)(Ng)−1(Nh)−1 = (Ng)(Nh)(Ng−1)(Nh−1) = N(ghg−1h−1) ∈ N.
Thus (Ng)(Nh)(Ng)−1(Nh)−1 = Ne, so that (Ng)(Nh) = (Nh)(Ng). Since this rela-
tion holds for all Ng,Nh ∈ G/N , we conclude that G/N is abelian.

2.6, Q14. Suppose that G is an abelian group of order n = p1p2 · · · pk, where the pi are distinct
primes. It follows from Cauchy’s theorem that for each i, since pi divides |G|, then the
group G has an element ai of order pi. Consider the element b = a1a2 · · · ak. Suppose
that r is the least positive integer for which br = e. If we write ni for the integer n/pi for
each i, and observe that ni is divisible by pj for all j 6= i, we see that (a

pj
j )rni/pj = e for

each integer j 6= i. Thus e = (br)ni = arni
i for each i, whence pi|rni for each i. But pi - ni,

so pi|r for each i. Consequently, we find that r must be divisible by p1p2 · · · pk = n. But
then the subgroup 〈b〉 has order at least n = |G|, whence G = 〈b〉 must be cyclic.

2.6, Q15. Suppose that G is an abelian group having one element a of order m, and another
element b of order n, with (m,n) = 1. Suppose that r is a positive integer for which
(ab)r = e. Then e = ((ab)r)m = (am)rbrm = erbrm = brm. But since the order of
b is n and brm = e, we must have n|(rm), and since (m,n) = 1, this implies that
n|r. Similarly, and symmetrically, we deduce from the relation e = ((ab)r)n that m|r.
Thus, since (m,n) = 1 and both m and n divide r, we must have (mn)|r. Then since
(ab)mn = (am)n(bn)m = e, it follows that r is the smallest positive integer with the
property that (ab)r = e, and thus the order of ab is mn, as claimed.


