HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 5

2.6, Q16. Let G be an abelian group of order $p^{n} m$, where p is a prime with $p \nmid m$, and put $P=\left\{a \in G: a^{p^{k}}=e\right.$ for some k depending on $\left.a\right\}$.
(a) The set P is non-empty, and if $a, b \in P$, then for some integers k and h one has $a^{p^{k}}=b^{p^{h}}=e$, whence $\left(a b^{-1}\right)^{p^{k+h}}=\left(a^{p^{k}}\right)^{p^{h}}\left(b^{p^{h}}\right)^{-p^{k}}=e^{p^{h}} e^{-p^{k}}=e$. The latter implies that $a b^{-1} \in P$. Hence $P \leq G$, as a consequence of the subgroup criterion.
(b) Since G is abelian, the subgroup P of G is normal. Suppose that $P x \in G / P$ has order p. Then we have $P=(P x)^{p}=P x^{p}$, so that $x^{p} \in P$. But then the definition of p implies that for some k depending on x, one has $e=\left(x^{p}\right)^{p^{k}}=x^{p^{k+1}}$, whence $x \in P$. We are therefore forced to conclude that $P x=P$, and the latter coset has order 1 in G / P, yielding a contradiction. There is therefore no element in G / P having order p.
(c) Suppose that $|P|=t$. By Lagrange's theorem, the order of P divides that of G, and so $t \mid\left(p^{n} m\right)$. Thus, if $p^{n} \nmid t$, one has that p divides $\left(p^{n} m\right) / t=|G| /|P|=|G / P|$. However, Cauchy's theorem shows that when p divides $|G / P|$, then G / P has an element of order p, and we have shown in part (b) that this is not the case. We must therefore conclude that $p^{n} \mid t$. Suppose, if possible, that $t \neq p^{n}$, so that t is divisible by a prime q different from p. In such circumstances, Cauchy's theorem shows that P has an element a of order q. But the definition of P ensures that the order of a divides p^{k} for some $k \in \mathbb{N}$, and this is impossible since $q \nmid p^{k}$. Thus we deduce that $t=p^{n}$, and hence $|P|=p^{n}$.
2.6, Q18. (a) In order to confirm that the set $T=\left\{a \in G: a^{m}=e\right.$ for some $m>1$ depending on $\left.a\right\}$ is a subgroup of G, observe first that $e \in T$, so that T is non-empty. Next, when $a, b \in T$, there exist integers $n>1$ and $m>1$ with $a^{n}=b^{m}=e$, and thus (since G is abelian) one has $\left(a b^{-1}\right)^{n m}=\left(a^{n}\right)^{m}\left(b^{m}\right)^{-n}=e^{m} e^{-n}=e$. Hence $a b^{-1} \in T$, and so $T \leq G$ by the subgroup criterion.
(b) Since G is abelian, the subgroup T of G must be normal. Suppose that G / T has an element $T x$ of finite order, say $e=(T x)^{k}=T x^{k}$ for some $k \in \mathbb{N}$. Then $x^{k} \in T$, so that for some $n \in \mathbb{N}$ one has $e=\left(x^{k}\right)^{n}=x^{k n}$. But the latter implies that $x \in T$, whence $T x=T$. Then G / T has no element, other than the identity element T, of finite order.
2.7, Q4. (a) Define $\psi: G \rightarrow G_{2}$ by putting $\psi((a, b))=b$. This map is well-defined, and for all $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ in G, one has $\psi\left(\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right)=\psi\left(\left(a_{1} a_{2}, b_{1} b_{2}\right)\right)=b_{1} b_{2}=$ $\psi\left(\left(a_{1}, b_{1}\right)\right) \psi\left(\left(a_{2}, b_{2}\right)\right)$, so ψ is a homomorphism. Moreover, we have $\operatorname{ker}(\psi)=\{(a, b) \in$ $\left.G: \psi((a, b))=e_{2}\right\}=\left\{\left(a, e_{2}\right): a \in G_{1}\right\}=N$. Since $\operatorname{ker}(\psi) \triangleleft G$, we have $N \triangleleft G$.
(b) We construct an isomorphism $\varphi: N \rightarrow G_{1}$ by defining $\varphi\left(\left(a, e_{2}\right)\right)=a$. This map is well-defined, and for all $\left(a, e_{2}\right)$ and $\left(b, e_{2}\right)$ in N, one has $\varphi\left(\left(a, e_{2}\right)\left(b, e_{2}\right)\right)=\varphi\left(a b, e_{2}\right)=$ $a b=\varphi\left(\left(a, e_{2}\right)\right) \varphi\left(\left(b, e_{2}\right)\right)$, so that φ is a homomorphism. If $\varphi\left(\left(a, e_{2}\right)\right)=\varphi\left(\left(b, e_{2}\right)\right)$, then $a=b$, whence $\left(a, e_{2}\right)=\left(b, e_{2}\right)$, and so φ is injective. Moreover, whenever $a \in G_{1}$, one has $\varphi\left(\left(a, e_{2}\right)\right)=a$, and $\left(a, e_{2}\right) \in N$, so that φ is surjective. Then φ is an injective and surjective homomorphism from N to G_{1}, and hence an isomorphism, whence $N \cong G_{1}$. (c) The map ψ from part (a) is plainly surjective, and so it follows from the First Homomorphism Theorem that $G / N=G / \operatorname{ker}(\psi) \cong G_{2}$.
2.7, Q6. Define $\varphi: G \rightarrow G / N$ to be the canonical homomorphism, and suppose $a \in G$ has finite order $n=o(a)$. Then since $(N a)^{n}=\varphi(a)^{n}=\varphi\left(a^{n}\right)=\varphi(e)=N$, it follows that the order of $N a$ in G / N has order m dividing n, which is to say that $m \mid o(a)$.
2.7, Q7. Suppose that $\varphi: G \rightarrow G^{\prime}$ is a surjective homomorphism. If $N \triangleleft G$, then we know that $\varphi(N) \leq G^{\prime}$ (Lemma 2.5.3). Moreover, since φ is surjective, whenever $g^{\prime} \in G^{\prime}$ there exists $g \in G$ with $\varphi(g)=g^{\prime}$, and hence $\left(g^{\prime}\right)^{-1} \varphi(N) g^{\prime}=\varphi(g)^{-1} \varphi(N) \varphi(g)=\varphi\left(g^{-1} N g\right)$. But $g^{-1} N g \subseteq N$ by the normality of N in G, and hence, for all $g^{\prime} \in G^{\prime}$ one has $\left(g^{\prime}\right)^{-1} \varphi(N) g^{\prime} \subseteq \varphi(N)$. Thus $\varphi(N) \triangleleft G^{\prime}$, as required.
3.2, Q3. (a) Since $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5\end{array}\right)=(1,3,4,2)(5,7,9)$, the permutation in question is a product of a disjoint 4-cycle and 3-cycle, and hence has order $\operatorname{lcm}(3,4)=12$.
(b) Since $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)=(1,7)(2,6)(3,5)$, the permutation in question is a product of 3 disjoint 2-cycles, and hence has order $\operatorname{lcm}(2,2,2)=2$.
(c) Since $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4\end{array}\right)=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 7 & 4 & 2 & 1 & 3\end{array}\right)=$ $(1,6)(2,5)(3,7)$, the permutation in question is a product of 3 disjoint 2-cycles, and hence has order $\operatorname{lcm}(2,2,2)=2$.
3.2, Q9. We obtain σ by applying a transposition that switches 2 and 3 , thereby obtaining $(1,3)$ from $(1,2)$. Thus $(2,3)(1,2)(2,3)^{-1}=(2,3)(1,2)(2,3)=(1,3)$, and we take $\sigma=(2,3)$.
3.2, Q11. We need to switch 1 with 4,2 with 5 , and 3 with 6 , so try $\sigma=(1,4)(2,5)(3,6)$. We have $\sigma(1,2,3) \sigma^{-1}=(1,4)(2,5)(3,6)(1,2,3)(1,4)(2,5)(3,6)=(4,5,6)$.
3.2, Q14. Let τ be a transposition, say $\tau=(a, b)$ with $a \neq b$. If σ is another permutation and n is an element with $\sigma^{-1}(n)$ different from a and b, then $\sigma \tau \sigma^{-1}(n)=\sigma \sigma^{-1}(n)=n$. On the other hand, if $\sigma^{-1}(n)=a$, we have $\tau \sigma^{-1}(n)=\tau(a)=b$, whence $\sigma \tau \sigma^{-1}(n)=\sigma(b)$, and similarly when $\sigma^{-1}(n)=b$ we obtain $\sigma \tau \sigma^{-1}(n)=\sigma(a)$. Thus $\sigma \tau \sigma^{-1}=(\sigma(a), \sigma(b))$, which is again a transposition.
3.2, Q17. We begin by showing that all transpositions $(1, a)$ with $1 \leq a \leq n$ are contained in any subgroup H containing $(1,2)$ and $\sigma=(1,2, \ldots, n)$. For by Q14, whenever $(1, a) \in H$ with $2 \leq a<n$, the closure of H implies that we have $\sigma^{-1}(1, a) \sigma=(\sigma(1), \sigma(a))=$ $(2, a+1) \in H$, and hence $(2, a+1)^{-1}(1,2)(2, a+1)=(1, a+1) \in H$. Thus $(1, a) \in H$ for all $2 \leq a \leq n$, whence $(1, b)^{-1}(1, a)(1, b)=(a, b) \in H$ for all $a \neq b$. Then H contains all transpositions. Since every element of S_{n} is a product of transpositions, and H contains all transpositions, we conclude by the closure of H that $H=S_{n}$, as required.
3.2, Q20. Suppose that τ_{1} and τ_{2} are distinct transpositions. By relabelling elements, we may suppose that $\tau_{1}=(1,2)$ and τ_{2} is either $(1,3)$ or $(3,4)$. In the former case $\tau_{1} \tau_{2}=$ $(1,2)(1,3)=(1,3,2)$ has order 3, and in the latter case $\tau_{1} \tau_{2}=(1,2)(3,4)$ has order 2.
3.2, Q23. If $\nu=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a k-cycle and $\rho \in S_{n}$, then in a similar manner as in the discussion of Q14, one has $\rho \nu \rho^{-1}=\left(\rho\left(a_{1}\right), \rho\left(a_{2}\right), \ldots, \rho\left(a_{k}\right)\right)$. Let the m_{j}-cycles in σ and τ be respectively $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$, where $m=m_{j}$. Then any permutation with $\rho\left(a_{h}\right)=b_{h}$ for $1 \leq h \leq m$ has the property that $\rho\left(a_{1}, \ldots, a_{m}\right) \rho^{-1}=\left(b_{1}, \ldots, b_{m}\right)$. This determines the action of the permutation ρ on the elements in the m_{j}-cycle. But the elements in each cycle comprising σ are disjoint, and so ρ is completely determined by its action on all of these cycles (including the trivial 1-cycles). Notice that since the cycles comprising τ are likewise disjoint, the action of ρ determined in this way does indeed define a permutation, since the action is injective. Let the cycles of length $m_{1}, \ldots m_{k}$ in σ and τ be respectively $\sigma_{1}, \ldots, \sigma_{k}$ and $\tau_{1}, \ldots, \tau_{k}$. Then we have $\rho \sigma_{j} \rho^{-1}=\tau_{j}$ for $1 \leq j \leq k$, and hence

$$
\rho \sigma \rho^{-1}=\rho \sigma_{1} \sigma_{2} \ldots \sigma_{k} \rho^{-1}=\left(\rho \sigma_{1} \rho^{-1}\right)\left(\rho \sigma_{2} \rho^{-1}\right) \ldots\left(\rho \sigma_{k} \rho^{-1}\right)=\tau_{1} \tau_{2} \ldots \tau_{k}=\tau
$$

