HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 5

2.6, Q16. Let G be an abelian group of order $p^n m$, where p is a prime with $p \nmid m$, and put $P = \{a \in G : a^{p^k} = e \text{ for some } k \text{ depending on } a\}.$

(a) The set P is non-empty, and if $a, b \in P$, then for some integers k and h one has $a^{p^k} = b^{p^h} = e$, whence $(ab^{-1})^{p^{k+h}} = (a^{p^k})^{p^h}(b^{p^h})^{-p^k} = e^{p^h}e^{-p^k} = e$. The latter implies that $ab^{-1} \in P$. Hence $P \leq G$, as a consequence of the subgroup criterion.

(b) Since G is abelian, the subgroup P of G is normal. Suppose that $Px \in G/P$ has order p. Then we have $P = (Px)^p = Px^p$, so that $x^p \in P$. But then the definition of p implies that for some k depending on x, one has $e = (x^p)^{p^k} = x^{p^{k+1}}$, whence $x \in P$. We are therefore forced to conclude that Px = P, and the latter coset has order 1 in G/P, yielding a contradiction. There is therefore no element in G/P having order p.

(c) Suppose that |P| = t. By Lagrange's theorem, the order of P divides that of G, and so $t|(p^nm)$. Thus, if $p^n \nmid t$, one has that p divides $(p^nm)/t = |G|/|P| = |G/P|$. However, Cauchy's theorem shows that when p divides |G/P|, then G/P has an element of order p, and we have shown in part (b) that this is not the case. We must therefore conclude that $p^n|t$. Suppose, if possible, that $t \neq p^n$, so that t is divisible by a prime q different from p. In such circumstances, Cauchy's theorem shows that P has an element a of order q. But the definition of P ensures that the order of a divides p^k for some $k \in \mathbb{N}$, and this is impossible since $q \nmid p^k$. Thus we deduce that $t = p^n$, and hence $|P| = p^n$.

2.6, Q18. (a) In order to confirm that the set $T = \{a \in G : a^m = e \text{ for some } m > 1 \text{ depending on } a\}$ is a subgroup of G, observe first that $e \in T$, so that T is non-empty. Next, when $a, b \in T$, there exist integers n > 1 and m > 1 with $a^n = b^m = e$, and thus (since G is abelian) one has $(ab^{-1})^{nm} = (a^n)^m (b^m)^{-n} = e^m e^{-n} = e$. Hence $ab^{-1} \in T$, and so $T \leq G$ by the subgroup criterion.

(b) Since G is abelian, the subgroup T of G must be normal. Suppose that G/T has an element Tx of finite order, say $e = (Tx)^k = Tx^k$ for some $k \in \mathbb{N}$. Then $x^k \in T$, so that for some $n \in \mathbb{N}$ one has $e = (x^k)^n = x^{kn}$. But the latter implies that $x \in T$, whence Tx = T. Then G/T has no element, other than the identity element T, of finite order.

- 2.7, Q4. (a) Define ψ : G → G₂ by putting ψ((a,b)) = b. This map is well-defined, and for all (a₁,b₁) and (a₂,b₂) in G, one has ψ((a₁,b₁)(a₂,b₂)) = ψ((a₁a₂,b₁b₂)) = b₁b₂ = ψ((a₁,b₁))ψ((a₂,b₂)), so ψ is a homomorphism. Moreover, we have ker(ψ) = {(a,b) ∈ G : ψ((a,b)) = e₂} = {(a,e₂) : a ∈ G₁} = N. Since ker(ψ) ⊲ G, we have N ⊲ G.
 (b) We construct an isomorphism φ : N → G₁ by defining φ((a,e₂)) = a. This map is well-defined, and for all (a, e₂) and (b, e₂) in N, one has φ((a, e₂)(b, e₂)) = φ(ab, e₂) = ab = φ((a, e₂))φ((b, e₂)), so that φ is a homomorphism. If φ((a, e₂)) = φ((b, e₂)), then a = b, whence (a, e₂) = (b, e₂), and so φ is injective. Moreover, whenever a ∈ G₁, one has φ((a, e₂)) = a, and (a, e₂) ∈ N, so that φ is surjective. Then φ is an injective and surjective homomorphism from N to G₁, and hence an isomorphism, whence N ≅ G₁.
 (c) The map ψ from part (a) is plainly surjective, and so it follows from the First Homomorphism Theorem that G/N = G/ker(ψ) ≅ G₂.
- 2.7, Q6. Define $\varphi: G \to G/N$ to be the canonical homomorphism, and suppose $a \in G$ has finite order n = o(a). Then since $(Na)^n = \varphi(a)^n = \varphi(a^n) = \varphi(e) = N$, it follows that the order of Na in G/N has order m dividing n, which is to say that m|o(a).

- 2.7, Q7. Suppose that $\varphi : G \to G'$ is a surjective homomorphism. If $N \triangleleft G$, then we know that $\varphi(N) \leq G'$ (Lemma 2.5.3). Moreover, since φ is surjective, whenever $g' \in G'$ there exists $g \in G$ with $\varphi(g) = g'$, and hence $(g')^{-1}\varphi(N)g' = \varphi(g)^{-1}\varphi(N)\varphi(g) = \varphi(g^{-1}Ng)$. But $g^{-1}Ng \subseteq N$ by the normality of N in G, and hence, for all $g' \in G'$ one has $(g')^{-1}\varphi(N)g' \subseteq \varphi(N)$. Thus $\varphi(N) \triangleleft G'$, as required.
- 3.2, Q3. (a) Since $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix} = (1,3,4,2)(5,7,9)$, the permutation in question is a product of a disjoint 4-cycle and 3-cycle, and hence has order lcm(3,4) = 12. (b) Since $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} = (1,7)(2,6)(3,5)$, the permutation in question is a product of 3 disjoint 2-cycles, and hence has order lcm(2,2,2) = 2. (c) Since $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 7 & 4 & 2 & 1 & 3 \end{pmatrix} = (1,6)(2,5)(3,7)$, the permutation in question is a product of 3 disjoint 2-cycles, and hence has order lcm(2,2,2) = 2.
- 3.2, Q9. We obtain σ by applying a transposition that switches 2 and 3, thereby obtaining (1,3) from (1,2). Thus (2,3) $(1,2)(2,3)^{-1} = (2,3)(1,2)(2,3) = (1,3)$, and we take $\sigma = (2,3)$.
- 3.2, Q11. We need to switch 1 with 4, 2 with 5, and 3 with 6, so try $\sigma = (1, 4) (2, 5) (3, 6)$. We have $\sigma(1, 2, 3)\sigma^{-1} = (1, 4) (2, 5) (3, 6) (1, 2, 3) (1, 4) (2, 5) (3, 6) = (4, 5, 6)$.
- 3.2, Q14. Let τ be a transposition, say $\tau = (a, b)$ with $a \neq b$. If σ is another permutation and n is an element with $\sigma^{-1}(n)$ different from a and b, then $\sigma\tau\sigma^{-1}(n) = \sigma\sigma^{-1}(n) = n$. On the other hand, if $\sigma^{-1}(n) = a$, we have $\tau\sigma^{-1}(n) = \tau(a) = b$, whence $\sigma\tau\sigma^{-1}(n) = \sigma(b)$, and similarly when $\sigma^{-1}(n) = b$ we obtain $\sigma\tau\sigma^{-1}(n) = \sigma(a)$. Thus $\sigma\tau\sigma^{-1} = (\sigma(a), \sigma(b))$, which is again a transposition.
- 3.2, Q17. We begin by showing that all transpositions (1, a) with $1 \le a \le n$ are contained in any subgroup H containing (1, 2) and $\sigma = (1, 2, ..., n)$. For by Q14, whenever $(1, a) \in H$ with $2 \le a < n$, the closure of H implies that we have $\sigma^{-1}(1, a)\sigma = (\sigma(1), \sigma(a)) =$ $(2, a + 1) \in H$, and hence $(2, a + 1)^{-1}(1, 2)(2, a + 1) = (1, a + 1) \in H$. Thus $(1, a) \in H$ for all $2 \le a \le n$, whence $(1, b)^{-1}(1, a)(1, b) = (a, b) \in H$ for all $a \ne b$. Then H contains all transpositions. Since every element of S_n is a product of transpositions, and Hcontains all transpositions, we conclude by the closure of H that $H = S_n$, as required.
- 3.2, Q20. Suppose that τ_1 and τ_2 are distinct transpositions. By relabelling elements, we may suppose that $\tau_1 = (1, 2)$ and τ_2 is either (1, 3) or (3, 4). In the former case $\tau_1 \tau_2 = (1, 2)(1, 3) = (1, 3, 2)$ has order 3, and in the latter case $\tau_1 \tau_2 = (1, 2)(3, 4)$ has order 2.
- 3.2, Q23. If $\nu = (a_1, a_2, \ldots, a_k)$ is a k-cycle and $\rho \in S_n$, then in a similar manner as in the discussion of Q14, one has $\rho\nu\rho^{-1} = (\rho(a_1), \rho(a_2), \ldots, \rho(a_k))$. Let the m_j -cycles in σ and τ be respectively (a_1, \ldots, a_m) and (b_1, \ldots, b_m) , where $m = m_j$. Then any permutation with $\rho(a_h) = b_h$ for $1 \leq h \leq m$ has the property that $\rho(a_1, \ldots, a_m)\rho^{-1} = (b_1, \ldots, b_m)$. This determines the action of the permutation ρ on the elements in the m_j -cycle. But the elements in each cycle comprising σ are disjoint, and so ρ is completely determined by its action on all of these cycles (including the trivial 1-cycles). Notice that since the cycles comprising τ are likewise disjoint, the action of ρ determined in this way does indeed define a permutation, since the action is injective. Let the cycles of length m_1, \ldots, m_k in σ and τ be respectively $\sigma_1, \ldots, \sigma_k$ and τ_1, \ldots, τ_k . Then we have $\rho\sigma_j\rho^{-1} = \tau_j$ for $1 \leq j \leq k$, and hence

$$\rho\sigma\rho^{-1} = \rho\sigma_1\sigma_2\ldots\sigma_k\rho^{-1} = (\rho\sigma_1\rho^{-1})(\rho\sigma_2\rho^{-1})\ldots(\rho\sigma_k\rho^{-1}) = \tau_1\tau_2\ldots\tau_k = \tau.$$