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2.6, Q16. Let G be an abelian group of order pnm, where p is a prime with p - m, and put

P = {a ∈ G : ap
k

= e for some k depending on a}.
(a) The set P is non-empty, and if a, b ∈ P , then for some integers k and h one has

ap
k

= bp
h

= e, whence (ab−1)p
k+h

= (ap
k
)p

h
(bp

h
)−p

k
= ep

h
e−p

k
= e. The latter implies

that ab−1 ∈ P . Hence P ≤ G, as a consequence of the subgroup criterion.
(b) Since G is abelian, the subgroup P of G is normal. Suppose that Px ∈ G/P has
order p. Then we have P = (Px)p = Pxp, so that xp ∈ P . But then the definition of p

implies that for some k depending on x, one has e = (xp)p
k

= xp
k+1

, whence x ∈ P . We
are therefore forced to conclude that Px = P , and the latter coset has order 1 in G/P ,
yielding a contradiction. There is therefore no element in G/P having order p.
(c) Suppose that |P | = t. By Lagrange’s theorem, the order of P divides that of G, and
so t|(pnm). Thus, if pn - t, one has that p divides (pnm)/t = |G|/|P | = |G/P |. However,
Cauchy’s theorem shows that when p divides |G/P |, then G/P has an element of order
p, and we have shown in part (b) that this is not the case. We must therefore conclude
that pn|t. Suppose, if possible, that t 6= pn, so that t is divisible by a prime q different
from p. In such circumstances, Cauchy’s theorem shows that P has an element a of
order q. But the definition of P ensures that the order of a divides pk for some k ∈ N,
and this is impossible since q - pk. Thus we deduce that t = pn, and hence |P | = pn.

2.6, Q18. (a) In order to confirm that the set T = {a ∈ G : am = e for some m > 1 depending on a}
is a subgroup of G, observe first that e ∈ T , so that T is non-empty. Next, when a, b ∈ T ,
there exist integers n > 1 and m > 1 with an = bm = e, and thus (since G is abelian)
one has (ab−1)nm = (an)m(bm)−n = eme−n = e. Hence ab−1 ∈ T , and so T ≤ G by the
subgroup criterion.
(b) Since G is abelian, the subgroup T of G must be normal. Suppose that G/T has an
element Tx of finite order, say e = (Tx)k = Txk for some k ∈ N. Then xk ∈ T , so that
for some n ∈ N one has e = (xk)n = xkn. But the latter implies that x ∈ T , whence
Tx = T . Then G/T has no element, other than the identity element T , of finite order.

2.7, Q4. (a) Define ψ : G → G2 by putting ψ((a, b)) = b. This map is well-defined, and for
all (a1, b1) and (a2, b2) in G, one has ψ((a1, b1)(a2, b2)) = ψ((a1a2, b1b2)) = b1b2 =
ψ((a1, b1))ψ((a2, b2)), so ψ is a homomorphism. Moreover, we have ker(ψ) = {(a, b) ∈
G : ψ((a, b)) = e2} = {(a, e2) : a ∈ G1} = N . Since ker(ψ) C G, we have N C G.
(b) We construct an isomorphism ϕ : N → G1 by defining ϕ ((a, e2)) = a. This map is
well-defined, and for all (a, e2) and (b, e2) in N , one has ϕ((a, e2)(b, e2)) = ϕ(ab, e2) =
ab = ϕ((a, e2))ϕ((b, e2)), so that ϕ is a homomorphism. If ϕ((a, e2)) = ϕ((b, e2)), then
a = b, whence (a, e2) = (b, e2), and so ϕ is injective. Moreover, whenever a ∈ G1, one
has ϕ((a, e2)) = a, and (a, e2) ∈ N , so that ϕ is surjective. Then ϕ is an injective and
surjective homomorphism from N to G1, and hence an isomorphism, whence N ∼= G1.
(c) The map ψ from part (a) is plainly surjective, and so it follows from the First
Homomorphism Theorem that G/N = G/ker(ψ) ∼= G2.

2.7, Q6. Define ϕ : G→ G/N to be the canonical homomorphism, and suppose a ∈ G has finite
order n = o(a). Then since (Na)n = ϕ(a)n = ϕ(an) = ϕ(e) = N , it follows that the
order of Na in G/N has order m dividing n, which is to say that m|o(a).
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2.7, Q7. Suppose that ϕ : G → G′ is a surjective homomorphism. If N C G, then we know
that ϕ(N) ≤ G′ (Lemma 2.5.3). Moreover, since ϕ is surjective, whenever g′ ∈ G′ there
exists g ∈ G with ϕ(g) = g′, and hence (g′)−1ϕ(N)g′ = ϕ(g)−1ϕ(N)ϕ(g) = ϕ(g−1Ng).
But g−1Ng ⊆ N by the normality of N in G, and hence, for all g′ ∈ G′ one has
(g′)−1ϕ(N)g′ ⊆ ϕ(N). Thus ϕ(N) C G′, as required.

3.2, Q3. (a) Since

(
1 2 3 4 5 6 7 8 9
3 1 4 2 7 6 9 8 5

)
= (1, 3, 4, 2) (5, 7, 9), the permutation in ques-

tion is a product of a disjoint 4-cycle and 3-cycle, and hence has order lcm(3, 4) = 12.

(b) Since

(
1 2 3 4 5 6 7
7 6 5 4 3 2 1

)
= (1, 7) (2, 6) (3, 5), the permutation in question is a

product of 3 disjoint 2-cycles, and hence has order lcm(2, 2, 2) = 2.

(c) Since

(
1 2 3 4 5 6 7
7 6 5 3 4 2 1

)(
1 2 3 4 5 6 7
2 3 1 5 6 7 4

)
=

(
1 2 3 4 5 6 7
6 5 7 4 2 1 3

)
=

(1, 6) (2, 5) (3, 7), the permutation in question is a product of 3 disjoint 2-cycles, and
hence has order lcm(2, 2, 2) = 2.

3.2, Q9. We obtain σ by applying a transposition that switches 2 and 3, thereby obtaining (1, 3)
from (1, 2). Thus (2, 3) (1, 2) (2, 3)−1 = (2, 3) (1, 2) (2, 3) = (1, 3), and we take σ = (2, 3).

3.2, Q11. We need to switch 1 with 4, 2 with 5, and 3 with 6, so try σ = (1, 4) (2, 5) (3, 6). We
have σ(1, 2, 3)σ−1 = (1, 4) (2, 5) (3, 6) (1, 2, 3) (1, 4) (2, 5) (3, 6) = (4, 5, 6).

3.2, Q14. Let τ be a transposition, say τ = (a, b) with a 6= b. If σ is another permutation and n
is an element with σ−1(n) different from a and b, then στσ−1(n) = σσ−1(n) = n. On
the other hand, if σ−1(n) = a, we have τσ−1(n) = τ(a) = b, whence στσ−1(n) = σ(b),
and similarly when σ−1(n) = b we obtain στσ−1(n) = σ(a). Thus στσ−1 = (σ(a), σ(b)),
which is again a transposition.

3.2, Q17. We begin by showing that all transpositions (1, a) with 1 ≤ a ≤ n are contained in any
subgroup H containing (1, 2) and σ = (1, 2, . . . , n). For by Q14, whenever (1, a) ∈ H
with 2 ≤ a < n, the closure of H implies that we have σ−1(1, a)σ = (σ(1), σ(a)) =
(2, a+ 1) ∈ H, and hence (2, a+ 1)−1(1, 2)(2, a+ 1) = (1, a+ 1) ∈ H. Thus (1, a) ∈ H
for all 2 ≤ a ≤ n, whence (1, b)−1(1, a)(1, b) = (a, b) ∈ H for all a 6= b. Then H contains
all transpositions. Since every element of Sn is a product of transpositions, and H
contains all transpositions, we conclude by the closure of H that H = Sn, as required.

3.2, Q20. Suppose that τ1 and τ2 are distinct transpositions. By relabelling elements, we may
suppose that τ1 = (1, 2) and τ2 is either (1, 3) or (3, 4). In the former case τ1τ2 =
(1, 2)(1, 3) = (1, 3, 2) has order 3, and in the latter case τ1τ2 = (1, 2)(3, 4) has order 2.

3.2, Q23. If ν = (a1, a2, . . . , ak) is a k-cycle and ρ ∈ Sn, then in a similar manner as in the
discussion of Q14, one has ρνρ−1 = (ρ(a1), ρ(a2), . . . , ρ(ak)). Let the mj-cycles in σ and
τ be respectively (a1, . . . , am) and (b1, . . . , bm), where m = mj. Then any permutation
with ρ(ah) = bh for 1 ≤ h ≤ m has the property that ρ(a1, . . . , am)ρ−1 = (b1, . . . , bm).
This determines the action of the permutation ρ on the elements in the mj-cycle. But
the elements in each cycle comprising σ are disjoint, and so ρ is completely determined
by its action on all of these cycles (including the trivial 1-cycles). Notice that since
the cycles comprising τ are likewise disjoint, the action of ρ determined in this way
does indeed define a permutation, since the action is injective. Let the cycles of length
m1, . . .mk in σ and τ be respectively σ1, . . . , σk and τ1, . . . , τk. Then we have ρσjρ

−1 = τj
for 1 ≤ j ≤ k, and hence

ρσρ−1 = ρσ1σ2 . . . σkρ
−1 = (ρσ1ρ

−1)(ρσ2ρ
−1) . . . (ρσkρ

−1) = τ1τ2 . . . τk = τ.


