HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 6

3.3, Q2. Suppose that σ is a k-cycle. Then we can write σ in the form $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=$ $\left(a_{k}, a_{1}\right)\left(a_{k-1}, a_{1}\right) \ldots\left(a_{2}, a_{1}\right)$, for suitable distinct integers a_{1}, \ldots, a_{k}. Then σ is a product of $k-1$ transpositions, and hence is even when k is odd, and odd when k is even.
3.3, Q3. Suppose that $\sigma, \tau \in S_{n}$, and that σ is the product of k transpositions, and that τ is the product of l transpositions. Thus, say, $\sigma=\mu_{1} \ldots \mu_{k}$ and $\tau=\nu_{1} \ldots \nu_{l}$, with the μ_{i} and ν_{i} all transpositions. We thus see that $\tau^{-1}=\nu_{l}^{-1} \ldots \nu_{1}^{-1}=\nu_{l} \ldots \nu_{1}$, and hence $\tau^{-1} \sigma \tau=\nu_{l} \ldots \nu_{1} \mu_{1} \ldots \mu_{k} \nu_{1} \ldots \nu_{l}$ is the product of $k+2 l$ transpositions. Since $k+2 l \equiv k$ $(\bmod 2)$, we conclude that σ and $\tau^{-1} \sigma \tau$ have the same parity.
3.3, Q7. Write $\tau_{1}=(2,1,3,4, \ldots, n)$ and $\tau_{2}=(n, n-1, \ldots, 3,2,1)$, and observe that $\tau_{1} \tau_{2}=$ $(1,2,3)$. Thus the 3 -cycle $(1,2,3)$ is a product of two n-cycles. Let a_{1}, a_{2}, a_{3} be distinct integers from $\{1,2, \ldots, n\}$, and let σ be any permutation with $\sigma(1)=a_{1}, \sigma(2)=a_{2}$ and $\sigma(3)=a_{3}$. Then $\sigma \tau_{i} \sigma^{-1}$ is an n-cycle for $i=1$ and 2 , and moreover their product is $\left(\sigma \tau_{1} \sigma^{-1}\right)\left(\sigma \tau_{2} \sigma^{-1}\right)=\sigma \tau_{1} \tau_{2} \sigma^{-1}=\sigma(1,2,3) \sigma^{-1}=(\sigma(1), \sigma(2), \sigma(3))=\left(a_{1}, a_{2}, a_{3}\right)$. Thus all 3 -cycles in S_{n} are the product of two n-cycles, and the latter product is necessarily even and hence lies in A_{n}. Since A_{n} is generated by 3-cycles, it follows that every element of A_{n} is a product of n-cycles.
6.1, Q1. Suppose that $n \geq 3$ and $\sigma \in Z\left(S_{n}\right) \backslash\{e\}$. Then for some $i, j \in\{1, \ldots, n\}$ with $i \neq j$, we have $\sigma(i)=j$. Since $n \geq 3$, there exists $k \in\{1, \ldots, n\}$ with $k \neq i$ and $k \neq j$. We take τ to be the transposition (j, k) and observe that $\tau \sigma \tau^{-1}(i)=k \neq j=\sigma(i)$, whence $\tau \sigma \tau^{-1} \neq \sigma$, and in particular one has $\tau \sigma \neq \sigma \tau$. We therefore deduce that whenever $\sigma \neq e$, then $\sigma \notin Z\left(S_{n}\right)$. Since e commutes with all elements of S_{n}, it follows that $Z\left(S_{n}\right)=\{e\}$, as required.
6.1, Q2. Suppose that $n \geq 4$ and $\sigma \in Z\left(A_{n}\right) \backslash\{e\}$. Then for some $i, j \in\{1, \ldots, n\}$ with $i \neq j$, we have $\sigma(i)=j$. Since $n \geq 4$, there exists $k, l \in\{1, \ldots, n\}$ with $k \neq l$ and neither k nor l equal to i or j. We take τ to be the 3 -cycle (j, k, l). Since 3 -cycles are even, we have $\tau \in A_{n}$. Moreover, one has $\tau \sigma \tau^{-1}(i)=k \neq j=\sigma(i)$, whence $\tau \sigma \tau^{-1} \neq \sigma$, and in particular one has $\tau \sigma \neq \sigma \tau$. We therefore deduce that whenever $\sigma \neq e$, then $\sigma \notin Z\left(A_{n}\right)$. Since e commutes with all elements of A_{n}, it follows that $Z\left(A_{n}\right)=\{e\}$, as required.
6.1, Q8. Suppose that $M \triangleleft N$ and $N \triangleleft G$. Then for all $a \in G$, and all $n \in N$, one has $a^{-1} n a \in N$, whence $a^{-1} n=n_{0} a^{-1}$ for some $n_{0} \in N$. But then $n^{-1}\left(a M a^{-1}\right) n=$ $\left(a^{-1} n\right)^{-1} M\left(a^{-1} n\right)=\left(n_{0} a^{-1}\right)^{-1} M n_{0} a^{-1}=a\left(n_{0}^{-1} M n_{0}\right) a^{-1}$. But using $M \triangleleft N$, we see that $n_{0}^{-1} M n_{0}=M$, and hence $n^{-1}\left(a M a^{-1}\right) n=a M a^{-1}$. Since this relation holds for all $n \in N$, we conclude that $a M a^{-1} \triangleleft N$ for all $a \in G$.

