HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 6

- 3.3, Q2. Suppose that σ is a k-cycle. Then we can write σ in the form $(a_1, a_2, \ldots, a_k) = (a_k, a_1)(a_{k-1}, a_1) \ldots (a_2, a_1)$, for suitable distinct integers a_1, \ldots, a_k . Then σ is a product of k-1 transpositions, and hence is even when k is odd, and odd when k is even.
- 3.3, Q3. Suppose that $\sigma, \tau \in S_n$, and that σ is the product of k transpositions, and that τ is the product of l transpositions. Thus, say, $\sigma = \mu_1 \dots \mu_k$ and $\tau = \nu_1 \dots \nu_l$, with the μ_i and ν_i all transpositions. We thus see that $\tau^{-1} = \nu_l^{-1} \dots \nu_1^{-1} = \nu_l \dots \nu_1$, and hence $\tau^{-1}\sigma\tau = \nu_l \dots \nu_1 \mu_1 \dots \mu_k \nu_1 \dots \nu_l$ is the product of k+2l transpositions. Since $k+2l \equiv k$ (mod 2), we conclude that σ and $\tau^{-1}\sigma\tau$ have the same parity.
- 3.3, Q7. Write $\tau_1 = (2, 1, 3, 4, ..., n)$ and $\tau_2 = (n, n 1, ..., 3, 2, 1)$, and observe that $\tau_1 \tau_2 = (1, 2, 3)$. Thus the 3-cycle (1, 2, 3) is a product of two *n*-cycles. Let a_1, a_2, a_3 be distinct integers from $\{1, 2, ..., n\}$, and let σ be any permutation with $\sigma(1) = a_1$, $\sigma(2) = a_2$ and $\sigma(3) = a_3$. Then $\sigma \tau_i \sigma^{-1}$ is an *n*-cycle for i = 1 and 2, and moreover their product is $(\sigma \tau_1 \sigma^{-1})(\sigma \tau_2 \sigma^{-1}) = \sigma \tau_1 \tau_2 \sigma^{-1} = \sigma(1, 2, 3)\sigma^{-1} = (\sigma(1), \sigma(2), \sigma(3)) = (a_1, a_2, a_3)$. Thus all 3-cycles in S_n are the product of two *n*-cycles, and the latter product is necessarily even and hence lies in A_n . Since A_n is generated by 3-cycles, it follows that every element of A_n is a product of *n*-cycles.
- 6.1, Q1. Suppose that $n \geq 3$ and $\sigma \in Z(S_n) \setminus \{e\}$. Then for some $i, j \in \{1, \ldots, n\}$ with $i \neq j$, we have $\sigma(i) = j$. Since $n \geq 3$, there exists $k \in \{1, \ldots, n\}$ with $k \neq i$ and $k \neq j$. We take τ to be the transposition (j, k) and observe that $\tau \sigma \tau^{-1}(i) = k \neq j = \sigma(i)$, whence $\tau \sigma \tau^{-1} \neq \sigma$, and in particular one has $\tau \sigma \neq \sigma \tau$. We therefore deduce that whenever $\sigma \neq e$, then $\sigma \notin Z(S_n)$. Since e commutes with all elements of S_n , it follows that $Z(S_n) = \{e\}$, as required.
- 6.1, Q2. Suppose that $n \ge 4$ and $\sigma \in Z(A_n) \setminus \{e\}$. Then for some $i, j \in \{1, \ldots, n\}$ with $i \ne j$, we have $\sigma(i) = j$. Since $n \ge 4$, there exists $k, l \in \{1, \ldots, n\}$ with $k \ne l$ and neither knor l equal to i or j. We take τ to be the 3-cycle (j, k, l). Since 3-cycles are even, we have $\tau \in A_n$. Moreover, one has $\tau \sigma \tau^{-1}(i) = k \ne j = \sigma(i)$, whence $\tau \sigma \tau^{-1} \ne \sigma$, and in particular one has $\tau \sigma \ne \sigma \tau$. We therefore deduce that whenever $\sigma \ne e$, then $\sigma \not\in Z(A_n)$. Since e commutes with all elements of A_n , it follows that $Z(A_n) = \{e\}$, as required.
- 6.1, Q8. Suppose that $M \triangleleft N$ and $N \triangleleft G$. Then for all $a \in G$, and all $n \in N$, one has $a^{-1}na \in N$, whence $a^{-1}n = n_0a^{-1}$ for some $n_0 \in N$. But then $n^{-1}(aMa^{-1})n = (a^{-1}n)^{-1}M(a^{-1}n) = (n_0a^{-1})^{-1}Mn_0a^{-1} = a(n_0^{-1}Mn_0)a^{-1}$. But using $M \triangleleft N$, we see that $n_0^{-1}Mn_0 = M$, and hence $n^{-1}(aMa^{-1})n = aMa^{-1}$. Since this relation holds for all $n \in N$, we conclude that $aMa^{-1} \triangleleft N$ for all $a \in G$.