HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 7

- 2.8, Q2. Let G be a group of order 35. Then since $35 = 5 \times 7$ as a product of primes, and 7 > 5 with $5 \nmid (7-1)$, we find from Theorem 2.8.5 that G is cyclic.
- 2.8, Q4. We can formally construct a non-abelian group G of order 21 using two generators, namely a of order 3 and b of order 7. Thus $a^3 = b^7 = e$. Every element of G can be written in the shape $a^i b^j$ with $0 \le i < 3$ and $0 \le j < 7$, with the canonical group law, provided that we write ba in such a form. Notice that all 21 of these elements are distinct. We can apply the corollary to Lemma 2.8.3 with p = 7 and q = 3 to see that $a^{-1}ba = b^i$ for some integer i with $0 \le i < 7$. But, since $a^3 = e$, we can argue as in the proof of Theorem 2.8.5 that $b = a^{-3}ba^3 = b^{i^3}$. Thus, since b has order 7, we find that this is consistent only when $i^3 \equiv 1 \pmod{7}$, so that i = 1, 2 or 4. The case i = 1corresponds to the abelian relation ba = ab, and we may ignore this since we seek a non-abelian group of order 21. Thus we may take either $ba = ab^2$ or $ba = ab^4$, and both relations yield a non-abelian group of order 21. Notice that $b^m a = ab^{im}$ for each m, and thus any product $(a^l b^j)(a^{l'} b^{j'})$ can be rewritten in the form $a^{l''} b^{j''}$ for suitable l'' and j''.
- 2.8, Q5. Let G be a group of order $p^n m$ with p prime, $p \nmid m$, and suppose that $P \triangleleft G$ satisfies $|P| = p^n$. We claim that P is the only normal subgroup of G having order p^n . Suppose, by way of deriving a contradiction, that there is a second such subgroup, say Q. Then $P \cap Q \triangleleft P$ and $|P \cap Q| < |P|$. By the Second Homomorphism Theorem, we then have $P/(P \cap Q) \cong (PQ)/Q$, whence $|PQ| = |P| \cdot |Q|/|P \cap Q| > |Q| = p^n$. But by Lagrange's theorem, the order of $P \cap Q$ is a power of p, and thus PQ is a subgroup of G having order p^k with k > n. This yields a contradiction, since $p^k \nmid |G|$, and so we conclude that P is indeed the only normal subgroup of G of order p^n . Suppose next that θ is an automorphism of G. Then given $g \in G$, there exists $h \in G$ with $\theta(h) = g$, and thus $g^{-1}\theta(P)g = \theta(h)^{-1}\theta(P)\theta(h) = \theta(h^{-1}Ph) = \theta(P)$, by the normality of P in G. Since $\theta(P) \leq G$, it follows that $\theta(P) \triangleleft G$. But $|\theta(P)| = |P| = p^n$, and P is the only normal subgroup of G having order p^n .
- 2.8, Q8. Let G be a group of order 99. It follows from Cauchy's theorem that G contains an element a of order 11, and hence a subgroup $A = \langle a \rangle$ of order 11. We claim that A is the only subgroup of G of order 11. For if B is a subgroup of order 11 and $B \neq A$, then just as in the proof of Lemma 2.8.3 we find that AB is a subset of G having $11^2 > |G|$ elements, which yields a contradiction. Then A is indeed the only subgroup of G having 11 elements, whence $g^{-1}Ag = A$ for all $g \in G$. Hence $A \triangleleft G$ and G has a nontrivial normal subgroup.
- 2.8, Q9. By Cauchy's theorem, a group G of order 42 has elements of order 2, 3 and 7. Suppose that a is an element of order 7, and put $A = \langle a \rangle$. We claim that A is the only subgroup of G of order 7. For if B is a subgroup of order 7 and $B \neq A$, then just as in the proof of Lemma 2.8.3 we find that AB is a subset of G having $7^2 > |G|$ elements, which yields a contradiction. Then A is indeed the only subgroup of G having 7 elements, whence $g^{-1}Ag = A$ for all $g \in G$. Hence $A \lhd G$ and G has a nontrivial normal subgroup.
- 2.8, Q10. Let G be a group of order 42. Then we know that G has a normal subgroup N of order 7. Write G' = G/N. Then Theorem 2.6.2 shows that there is a surjective homomorphism

 $\psi: G \to G'$ with ker $(\psi) = N$. Since |G'| = |G|/|N| = 42/7 = 6, it follows from Cauchy's theorem that G' has an element b of order 3. Put $H' = \langle b \rangle$. Then from Lemma 2.8.3 we see that $H' \lhd G'$. Putting $H = \{g \in G : \psi(g) \in H'\}$, we find from the Correspondence Theorem that $H \lhd G$ and $H/N \cong H'$. But then 3 = |H'| = |H|/|N| = |H|/7, whence |H| = 21. So there is indeed a normal subgroup H of G having order 21.

2.8, Q12. Let G be a non-abelian group of order 21. Then by Cauchy's theorem, we find that G has an element a of order 3, and an element b of order 7, and these elements are necessarily distinct. Moreover, the corollary to Lemma 2.8.3 shows that one necessarily has $a^{-1}ba = b^i$ for some integer i with $0 \le i < 7$. As we saw in question 4, one must then have i = 2 or 4 if G is to be non-abelian. Thus, the group G is isomorphic to one of the two groups corresponding to these values of i defined in question 4. For i = 2 and 4, consider the group G_i corresponding to i with generators a_i and b_i satisfying $a_i^3 = b_i^7 = e_i$ and $b_i a_i = ab_i^i$. We consider the map $\varphi : G_2 \to G_4$ defined by taking $\varphi(a_2^m b_2^n) = a_4^{2m} b_4^{4n}$. Thus $\varphi(a_2) = a_4^2$ and $\varphi(b_2) = b_4^4$. It is apparent that this defines a bijection by considering the inverse map $\psi : G_4 \to G_2$ defined by taking $\psi(a_4^m b_2^n) = a_2^{2m} b_2^{2n}$. The homomorphism property of φ is confirmed by observing that

$$\begin{split} \varphi(a_2^m b_2^n a_2^{m'} b_2^{n'}) &= \varphi(a_2^{m+m'} b_2^{n2^{m'}+n'}) = a_4^{2m+2m'} b_4^{4n2^{m'}+4n'} = a_4^{2m+2m'} (b_4^4)^{n4^{2m'}+n'} \\ &= a_4^{2m} (b_4^4)^n a_4^{2m'} (b_4^4)^{n'} = \varphi(a_2^m b_2^n) \varphi(a_2^{m'} b_2^{n'}). \end{split}$$

Then $G_2 \cong G_4$, and we see that any two non-abelian groups of order 21 are isomorphic.

- 2.9, Q1. Define the map $\varphi: G_1 \times G_2 \to G_2 \times G_1$ by taking $\varphi(g_1, g_2) = (g_2, g_1)$. By considering the inverse map $\psi: G_2 \times G_1 \to G_1 \times G_2$ defined by putting $\psi(g_2, g_1) = (g_1, g_2)$, we see that φ is a bijection. Moreover, when (g_1, g_2) and (h_1, h_2) both lie in $G_1 \times G_2$, one finds that $\varphi((g_1, g_2)(h_1, h_2)) = \varphi(g_1h_1, g_2h_2) = (g_2h_2, g_1h_1) = (g_2, g_1)(h_2, h_1) = \varphi(g_1, g_2)\varphi(h_1, h_2)$, so that φ satisfies the homomorphism property. Thus φ is an isomorphism, and one has $G_1 \times G_2 \cong G_2 \times G_1$.
- 2.9, Q2. Suppose that G_1 and G_2 are cyclic groups of respective orders m and n. We have that $G_1 \times G_2$ is cyclic with generator (a, b) if and only if (a, b) has order $mn = |G_1 \times G_2|$. But the order of a divides m and the order of b divides n. Suppose that (m, n) = d. Then $(a, b)^{mn/d} = ((a^m)^{n/d}, (b^n)^{m/d}) = (e, e)$, so that (a, b) has order dividing mn/d. In particular, if d = (m, n) > 1, then (a, b) has order smaller than mn and $G_1 \times G_2$ cannot be cyclic. When (m, n) = 1, meanwhile, we may assume that $G_1 = \langle a \rangle$ and $G_2 = \langle b \rangle$ with a of order m and b of order n. If $(e, e) = (a, b)^r = (a^r, b^r)$, then m|r and n|r, whence mn|r, and so (a, b) has order mn and $G_1 \times G_2 = \langle (a, b) \rangle$, so that $G_1 \times G_2$ is cyclic. Thus $G_1 \times G_2$ is cyclic if and only if (m, n) = 1.
- 2.9, Q3. (a) Define the map $\varphi : G \to T$ by taking $g \mapsto (g, g)$. Then φ is plainly well-defined and surjective. Moreover, one has $\varphi(g) = \varphi(h)$ if and only if (g, g) = (h, h), which holds if and only if g = h, and so φ is also injective. Finally, whenever $g, h \in G$, one has $\varphi(gh) = (gh, gh) = (g, g)(h, h) = \varphi(g)\varphi(h)$, so φ is a homomorphism. Thus, the map φ is an isomorphism, and so $T \cong G$.

(b) If G is abelian, then given any element $(a, a) \in T$, whenever $(g, h) \in A$ one has $(g, h)^{-1}(a, a)(g, h) = (g^{-1}ag, h^{-1}ah) = (g^{-1}ga, h^{-1}ha) = (a, a)$. Hence, for all $\gamma \in A$ one has $\gamma^{-1}T\gamma = T$, whence $T \triangleleft A$. If, on the other hand, one has $T \triangleleft A$, then for all $a, b \in G$ one has $(e, b)^{-1}(a, a)(e, b) \in A$, whence for some element $c \in G$ one has $(a, b^{-1}ab) = (c, c)$. Thus c = a and $b^{-1}ab = c = a$. We therefore conclude that for all $a, b \in G$ one has ab = ba, which is to say that G is abelian. Thus $T \triangleleft A$ if and only if G is abelian.

- 2.9, Q5. Suppose that $G = N_1 N_2 \cdots N_k$ and some element $g \in G$ has more than one representation in the form $g = g_1 g_2 \cdots g_k$, with $g_i \in N_i$ for each *i*. Then one must have $|G| < |N_1||N_2|\cdots|N_k|$, yielding a contradiction. Thus each element $g \in G$ must have a unique representation in the form $g = g_1 g_2 \cdots g_k$, with $g_i \in N_i$ for each *i*, so that *G* is the internal direct product of N_1, N_2, \ldots, N_k .
- 2.9, Q6. For each *i*, write $M_i = N_1 N_2 \cdots N_{i-1} N_{i+1} \cdots N_k$. Observe that whenever $j \neq i$ and $g_j \in N_j$, one has $g_j = ee \cdots eg_j e \cdots e \in M_i$. Thus, if $N_i \cap M_i = \{e\}$ for each *i*, then we have $N_i \cap N_j = \{e\}$ whenever $i \neq j$. The Corollary to Lemma 2.9.3 therefore shows that whenever $g_i \in N_i$, then g_i commutes with every element of N_j $(j \neq i)$, and hence with every element of M_i . But then, if $g_i, h_i \in N_i$ $(1 \leq i \leq k)$, one has that $g_1 \cdots g_k = h_1 \cdots h_k$ if and only if $e = g_k^{-1} \cdots g_2^{-1} (g_1^{-1} h_1) h_2 \cdots h_k = (g_1^{-1} h_1) (g_2^{-1} h_2) \cdots (g_k^{-1} h_k)$. The latter holds if and only if $h_1^{-1} g_1 = (g_2^{-1} h_2) \cdots (g_k^{-1} h_k) \in M_1$. Since $h_1^{-1} g_1 \in N_1$ and $N_1 \cap M_1 = \{e\}$, it follows that $h_1^{-1} g_1 = e$ and thus $g_1 = h_1$. We can repeat this argument now with the index 2 in place of 1, and proceeding inductively, we deduce that $g_i = h_i$ for each *i*. Thus, each element of $N_1 N_2 \cdots N_k$ has a unique representation $g_1 g_2 \cdots g_k$ with $g_i \in N_i$ for each *i*, whence $|G| = |N_1||N_2|\cdots|N_k|$. We therefore conclude from Q5 that G is the internal direct product of N_1, N_2, \dots, N_k .