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Let G be a group of order 35. Then since 35 =5 x 7 as a product of primes, and 7 > 5
with 51 (7 — 1), we find from Theorem 2.8.5 that G is cyclic.

We can formally construct a non-abelian group G of order 21 using two generators,
namely a of order 3 and b of order 7. Thus a® = b” = e. Every element of G can be
written in the shape a't’ with 0 < i < 3 and 0 < j < 7, with the canonical group
law, provided that we write ba in such a form. Notice that all 21 of these elements are
distinct. We can apply the corollary to Lemma 2.8.3 with p = 7 and ¢ = 3 to see that
a~tba = b for some integer ¢ with 0 < 7 < 7. But, since a® = e, we can argue as in
the proof of Theorem 2.8.5 that b = a=3ba® = b Thus, since b has order 7, we find
that this is consistent only when 7> =1 (mod 7), so that i = 1, 2 or 4. The case i = 1
corresponds to the abelian relation ba = ab, and we may ignore this since we seek a
non-abelian group of order 21. Thus we may take either ba = ab? or ba = ab*, and both
relations yield a non-abelian group of order 21. Notice that b™a = ab’™ for each m, and
thus any product (a'b?)(a"?’") can be rewritten in the form a' &" for suitable I” and ;.

Let G be a group of order p™m with p prime, p f m, and suppose that P < G satisfies
|P| = p™. We claim that P is the only normal subgroup of G having order p™. Suppose,
by way of deriving a contradiction, that there is a second such subgroup, say ). Then
PN@ < P and |[PNQ| < |P|. By the Second Homomorphism Theorem, we then have
P/(PNQ) = (PQ)/Q, whence |PQ| = |P| - [QI/|PNQ| > |Q] = p". But by Lagrange’s
theorem, the order of P N () is a power of p, and thus PQ is a subgroup of G having
order p* with k& > n. This yields a contradiction, since p* { |G|, and so we conclude
that P is indeed the only normal subgroup of G of order p™. Suppose next that € is an
automorphism of G. Then given g € G, there exists h € G with #(h) = ¢, and thus
g to(P)g = (h)~'0(P)0(h) = 6(h~1Ph) = 6(P), by the normality of P in G. Since
0(P) < G, it follows that §(P) < G. But |#(P)| = |P| = p", and P is the only normal
subgroup of G having order p™. We are therefore forced to conclude that §(P) = P for
all automorphisms 6 of G.

Let G be a group of order 99. It follows from Cauchy’s theorem that G contains an
element a of order 11, and hence a subgroup A = (a) of order 11. We claim that A is
the only subgroup of GG of order 11. For if B is a subgroup of order 11 and B # A, then
just as in the proof of Lemma 2.8.3 we find that AB is a subset of G having 11% > |G|
elements, which yields a contradiction. Then A is indeed the only subgroup of G having
11 elements, whence g7'Ag = A for all g € G. Hence A <t G and G has a nontrivial
normal subgroup.

By Cauchy’s theorem, a group G of order 42 has elements of order 2, 3 and 7. Suppose
that a is an element of order 7, and put A = (a). We claim that A is the only subgroup
of G of order 7. For if B is a subgroup of order 7 and B # A, then just as in the proof
of Lemma 2.8.3 we find that AB is a subset of G having 72 > |G| elements, which yields
a contradiction. Then A is indeed the only subgroup of G having 7 elements, whence
g 'Ag = Afor all g € G. Hence A < G and G has a nontrivial normal subgroup.

Let G be a group of order 42. Then we know that G has a normal subgroup NN of order 7.

Write G’ = G/N. Then Theorem 2.6.2 shows that there is a surjective homomorphism
1
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¥ G — G" with ker(¢) = N. Since |G’'| = |G|/|N| = 42/7 = 6, it follows from Cauchy’s
theorem that G’ has an element b of order 3. Put H' = (b). Then from Lemma 2.8.3 we
see that H' < G'. Putting H = {g € G : ¢¥(g) € H'}, we find from the Correspondence
Theorem that H < G and H/N = H'. But then 3 = |H'| = |H|/|N| = |H|/7, whence
|H| = 21. So there is indeed a normal subgroup H of G having order 21.

Let G be a non-abelian group of order 21. Then by Cauchy’s theorem, we find that
G has an element a of order 3, and an element b of order 7, and these elements are
necessarily distinct. Moreover, the corollary to Lemma 2.8.3 shows that one necessarily
has a~'ba = b* for some integer ¢ with 0 < i < 7. As we saw in question 4, one must
then have ¢+ = 2 or 4 if G is to be non-abelian. Thus, the group G is isomorphic to one
of the two groups corresponding to these values of ¢ defined in question 4. For ¢ = 2
and 4, consider the group G; corresponding to i with generators a; and b; satisfying
a; = bl = e; and b;a; = abi. We consider the map ¢ : Gy — G4 defined by taking
o(amby) = a2™bi". Thus ¢(as) = a2 and p(by) = b}. It is apparent that this defines
a bijection by considering the inverse map ¢ : G4 — G5 defined by taking v (a}'by) =
a2™b2". The homomorphism property of ¢ is confirmed by observing that
gp(a’znbga’znl b;‘/) — cp(ag”m/ b1212m +n’) _ aim+2m’ bﬁmm +4n _ aim+2m’(bi)n42m +n’
= g™ (b)) ai™ (b)) = p(a5'03)p (a5 by ).
Then G5 = G4, and we see that any two non-abelian groups of order 21 are isomorphic.

Define the map ¢ : Gy x Gy — G5 x Gy by taking ©(g1, 92) = (g2, g1). By considering the
inverse map 1 : Go X G; — G X G4 defined by putting (g2, g1) = (g1, g2), we see that
¢ is a bijection. Moreover, when (gi, go) and (hy, he) both lie in G; X G5, one finds that

©((91,92) (1, h2)) = @(g1h1, g2h2) = (g2ha2, g1h1) = (92, 91)(h2, b)) = @(g1, g2)p(ha, ha),
so that ¢ satisfies the homomorphism property. Thus ¢ is an isomorphism, and one has

G1XG2gG2XG1.

Suppose that G; and G5 are cyclic groups of respective orders m and n. We have that
G1 X Gg is cyclic with generator (a,b) if and only if (a,b) has order mn = |G; x Gl.
But the order of a divides m and the order of b divides n. Suppose that (m,n) = d.
Then (a,b)™4 = ((a™)™4, (b")™%) = (e, e), so that (a,b) has order dividing mn/d. In
particular, if d = (m,n) > 1, then (a, b) has order smaller than mn and G; x G5 cannot
be cyclic. When (m,n) = 1, meanwhile, we may assume that G; = (a) and Gy = (b)
with a of order m and b of order n. If (e,e) = (a,b)” = (a",b"), then m|r and n|r,
whence mn|r, and so (a,b) has order mn and Gy x Gy = ((a,b)), so that Gy x Gy is
cyclic. Thus G; X Gy is cyclic if and only if (m,n) = 1.

(a) Define the map ¢ : G — T by taking g — (g,¢). Then ¢ is plainly well-defined and
surjective. Moreover, one has ¢(g) = ¢(h) if and only if (g,9) = (h,h), which holds
if and only if ¢ = h, and so ¢ is also injective. Finally, whenever g, h € G, one has
©(gh) = (gh,gh) = (g9,9)(h,h) = p(g9)¢(h), so ¢ is a homomorphism. Thus, the map ¢
is an isomorphism, and so T = G.

(b) If G is abelian, then given any element (a,a) € T, whenever (g,h) € A one has
(g,h) Y (a,a)(g,h) = (g tag,h~tah) = (g 'ga,h 'ha) = (a,a). Hence, for all vy € A
one has vy~ 1Ty = T, whence T' <1 A. If, on the other hand, one has 7" <1 A, then for
all a,b € G one has (e,b)"'(a,a)(e,b) € A, whence for some element ¢ € G one has
(a,b7tab) = (¢,c). Thus ¢ = a and b~'ab = ¢ = a. We therefore conclude that for all
a,b € G one has ab = ba, which is to say that G is abelian. Thus T' < A if and only if
G is abelian.
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Suppose that G = N;N,--- N and some element g € G has more than one repre-
sentation in the form ¢ = ¢195--- gg, with g; € N; for each i. Then one must have
|G| < |Ny||Na|- - |Nk|, yielding a contradiction. Thus each element g € G must have a
unique representation in the form g = g195 - - - g, with g; € N; for each i, so that G is
the internal direct product of Ny, Ns, ..., Nj.

For each i, write M; = N{Ny---N;_1N;y1---Ng. Observe that whenever j # ¢ and
g; € Nj, one has g; = ee---egje---e € M;. Thus, if N; N M; = {e} for each i, then
we have N; N N; = {e} whenever i # j. The Corollary to Lemma 2.9.3 therefore shows
that whenever g; € NV;, then g; commutes with every element of N; (j # i), and hence
with every element of M;. But then, if g;,h; € N; (1 <i < k), one has that g --- gx =
hy---hg if and only if e = g, ' -+~ g5 ' (g7 ' ha)ha - - ha, = (g7 'ha) (g5 "ha) <+ (g5, 'hi). The
latter holds if and only if hi'g; = (g5 'ha)--- (g, 'hx) € M. Since hi'g; € N, and
N1 N M; = {e}, it follows that h;'g; = e and thus g; = h;. We can repeat this
argument now with the index 2 in place of 1, and proceeding inductively, we deduce
that g; = h; for each ¢. Thus, each element of Ny N, --- N; has a unique representation
9192 - - - g, with g; € N; for each ¢, whence |G| = |Ny||Na| - - - | Ng|. We therefore conclude
from Qb5 that G is the internal direct product of Ny, Ny, ..., Ny.



