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2.8, Q2. Let G be a group of order 35. Then since 35 = 5× 7 as a product of primes, and 7 > 5
with 5 - (7− 1), we find from Theorem 2.8.5 that G is cyclic.

2.8, Q4. We can formally construct a non-abelian group G of order 21 using two generators,
namely a of order 3 and b of order 7. Thus a3 = b7 = e. Every element of G can be
written in the shape aibj with 0 ≤ i < 3 and 0 ≤ j < 7, with the canonical group
law, provided that we write ba in such a form. Notice that all 21 of these elements are
distinct. We can apply the corollary to Lemma 2.8.3 with p = 7 and q = 3 to see that
a−1ba = bi for some integer i with 0 ≤ i < 7. But, since a3 = e, we can argue as in
the proof of Theorem 2.8.5 that b = a−3ba3 = bi

3
. Thus, since b has order 7, we find

that this is consistent only when i3 ≡ 1 (mod 7), so that i = 1, 2 or 4. The case i = 1
corresponds to the abelian relation ba = ab, and we may ignore this since we seek a
non-abelian group of order 21. Thus we may take either ba = ab2 or ba = ab4, and both
relations yield a non-abelian group of order 21. Notice that bma = abim for each m, and
thus any product (albj)(al

′
bj

′
) can be rewritten in the form al

′′
bj

′′
for suitable l′′ and j′′.

2.8, Q5. Let G be a group of order pnm with p prime, p - m, and suppose that P C G satisfies
|P | = pn. We claim that P is the only normal subgroup of G having order pn. Suppose,
by way of deriving a contradiction, that there is a second such subgroup, say Q. Then
P ∩Q C P and |P ∩Q| < |P |. By the Second Homomorphism Theorem, we then have
P/(P ∩Q) ∼= (PQ)/Q, whence |PQ| = |P | · |Q|/|P ∩Q| > |Q| = pn. But by Lagrange’s
theorem, the order of P ∩ Q is a power of p, and thus PQ is a subgroup of G having
order pk with k > n. This yields a contradiction, since pk - |G|, and so we conclude
that P is indeed the only normal subgroup of G of order pn. Suppose next that θ is an
automorphism of G. Then given g ∈ G, there exists h ∈ G with θ(h) = g, and thus
g−1θ(P )g = θ(h)−1θ(P )θ(h) = θ(h−1Ph) = θ(P ), by the normality of P in G. Since
θ(P ) ≤ G, it follows that θ(P ) C G. But |θ(P )| = |P | = pn, and P is the only normal
subgroup of G having order pn. We are therefore forced to conclude that θ(P ) = P for
all automorphisms θ of G.

2.8, Q8. Let G be a group of order 99. It follows from Cauchy’s theorem that G contains an
element a of order 11, and hence a subgroup A = 〈a〉 of order 11. We claim that A is
the only subgroup of G of order 11. For if B is a subgroup of order 11 and B 6= A, then
just as in the proof of Lemma 2.8.3 we find that AB is a subset of G having 112 > |G|
elements, which yields a contradiction. Then A is indeed the only subgroup of G having
11 elements, whence g−1Ag = A for all g ∈ G. Hence A C G and G has a nontrivial
normal subgroup.

2.8, Q9. By Cauchy’s theorem, a group G of order 42 has elements of order 2, 3 and 7. Suppose
that a is an element of order 7, and put A = 〈a〉. We claim that A is the only subgroup
of G of order 7. For if B is a subgroup of order 7 and B 6= A, then just as in the proof
of Lemma 2.8.3 we find that AB is a subset of G having 72 > |G| elements, which yields
a contradiction. Then A is indeed the only subgroup of G having 7 elements, whence
g−1Ag = A for all g ∈ G. Hence A C G and G has a nontrivial normal subgroup.

2.8, Q10. Let G be a group of order 42. Then we know that G has a normal subgroup N of order 7.
Write G′ = G/N . Then Theorem 2.6.2 shows that there is a surjective homomorphism
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ψ : G→ G′ with ker(ψ) = N . Since |G′| = |G|/|N | = 42/7 = 6, it follows from Cauchy’s
theorem that G′ has an element b of order 3. Put H ′ = 〈b〉. Then from Lemma 2.8.3 we
see that H ′ C G′. Putting H = {g ∈ G : ψ(g) ∈ H ′}, we find from the Correspondence
Theorem that H C G and H/N ∼= H ′. But then 3 = |H ′| = |H|/|N | = |H|/7, whence
|H| = 21. So there is indeed a normal subgroup H of G having order 21.

2.8, Q12. Let G be a non-abelian group of order 21. Then by Cauchy’s theorem, we find that
G has an element a of order 3, and an element b of order 7, and these elements are
necessarily distinct. Moreover, the corollary to Lemma 2.8.3 shows that one necessarily
has a−1ba = bi for some integer i with 0 ≤ i < 7. As we saw in question 4, one must
then have i = 2 or 4 if G is to be non-abelian. Thus, the group G is isomorphic to one
of the two groups corresponding to these values of i defined in question 4. For i = 2
and 4, consider the group Gi corresponding to i with generators ai and bi satisfying
a3i = b7i = ei and biai = abii. We consider the map ϕ : G2 → G4 defined by taking
ϕ(am2 b

n
2 ) = a2m4 b4n4 . Thus ϕ(a2) = a24 and ϕ(b2) = b44. It is apparent that this defines

a bijection by considering the inverse map ψ : G4 → G2 defined by taking ψ(am4 b
n
2 ) =

a2m2 b2n2 . The homomorphism property of ϕ is confirmed by observing that

ϕ(am2 b
n
2a

m′

2 bn
′

2 ) = ϕ(am+m′

2 bn2
m′

+n′

2 ) = a2m+2m′

4 b4n2
m′

+4n′

4 = a2m+2m′

4 (b44)
n42m

′
+n′

= a2m4 (b44)
na2m

′

4 (b44)
n′

= ϕ(am2 b
n
2 )ϕ(am

′

2 bn
′

2 ).

Then G2
∼= G4, and we see that any two non-abelian groups of order 21 are isomorphic.

2.9, Q1. Define the map ϕ : G1×G2 → G2×G1 by taking ϕ(g1, g2) = (g2, g1). By considering the
inverse map ψ : G2 ×G1 → G1 ×G2 defined by putting ψ(g2, g1) = (g1, g2), we see that
ϕ is a bijection. Moreover, when (g1, g2) and (h1, h2) both lie in G1×G2, one finds that
ϕ((g1, g2)(h1, h2)) = ϕ(g1h1, g2h2) = (g2h2, g1h1) = (g2, g1)(h2, h1) = ϕ(g1, g2)ϕ(h1, h2),
so that ϕ satisfies the homomorphism property. Thus ϕ is an isomorphism, and one has
G1 ×G2

∼= G2 ×G1.

2.9, Q2. Suppose that G1 and G2 are cyclic groups of respective orders m and n. We have that
G1 × G2 is cyclic with generator (a, b) if and only if (a, b) has order mn = |G1 × G2|.
But the order of a divides m and the order of b divides n. Suppose that (m,n) = d.
Then (a, b)mn/d = ((am)n/d, (bn)m/d) = (e, e), so that (a, b) has order dividing mn/d. In
particular, if d = (m,n) > 1, then (a, b) has order smaller than mn and G1×G2 cannot
be cyclic. When (m,n) = 1, meanwhile, we may assume that G1 = 〈a〉 and G2 = 〈b〉
with a of order m and b of order n. If (e, e) = (a, b)r = (ar, br), then m|r and n|r,
whence mn|r, and so (a, b) has order mn and G1 × G2 = 〈(a, b)〉, so that G1 × G2 is
cyclic. Thus G1 ×G2 is cyclic if and only if (m,n) = 1.

2.9, Q3. (a) Define the map ϕ : G→ T by taking g 7→ (g, g). Then ϕ is plainly well-defined and
surjective. Moreover, one has ϕ(g) = ϕ(h) if and only if (g, g) = (h, h), which holds
if and only if g = h, and so ϕ is also injective. Finally, whenever g, h ∈ G, one has
ϕ(gh) = (gh, gh) = (g, g)(h, h) = ϕ(g)ϕ(h), so ϕ is a homomorphism. Thus, the map ϕ
is an isomorphism, and so T ∼= G.
(b) If G is abelian, then given any element (a, a) ∈ T , whenever (g, h) ∈ A one has
(g, h)−1(a, a)(g, h) = (g−1ag, h−1ah) = (g−1ga, h−1ha) = (a, a). Hence, for all γ ∈ A
one has γ−1Tγ = T , whence T C A. If, on the other hand, one has T C A, then for
all a, b ∈ G one has (e, b)−1(a, a)(e, b) ∈ A, whence for some element c ∈ G one has
(a, b−1ab) = (c, c). Thus c = a and b−1ab = c = a. We therefore conclude that for all
a, b ∈ G one has ab = ba, which is to say that G is abelian. Thus T C A if and only if
G is abelian.
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2.9, Q5. Suppose that G = N1N2 · · ·Nk and some element g ∈ G has more than one repre-
sentation in the form g = g1g2 · · · gk, with gi ∈ Ni for each i. Then one must have
|G| < |N1||N2| · · · |Nk|, yielding a contradiction. Thus each element g ∈ G must have a
unique representation in the form g = g1g2 · · · gk, with gi ∈ Ni for each i, so that G is
the internal direct product of N1, N2, . . . , Nk.

2.9, Q6. For each i, write Mi = N1N2 · · ·Ni−1Ni+1 · · ·Nk. Observe that whenever j 6= i and
gj ∈ Nj, one has gj = ee · · · egje · · · e ∈ Mi. Thus, if Ni ∩Mi = {e} for each i, then
we have Ni ∩Nj = {e} whenever i 6= j. The Corollary to Lemma 2.9.3 therefore shows
that whenever gi ∈ Ni, then gi commutes with every element of Nj (j 6= i), and hence
with every element of Mi. But then, if gi, hi ∈ Ni (1 ≤ i ≤ k), one has that g1 · · · gk =
h1 · · ·hk if and only if e = g−1k · · · g

−1
2 (g−11 h1)h2 · · ·hk = (g−11 h1)(g

−1
2 h2) · · · (g−1k hk). The

latter holds if and only if h−11 g1 = (g−12 h2) · · · (g−1k hk) ∈ M1. Since h−11 g1 ∈ N1 and
N1 ∩ M1 = {e}, it follows that h−11 g1 = e and thus g1 = h1. We can repeat this
argument now with the index 2 in place of 1, and proceeding inductively, we deduce
that gi = hi for each i. Thus, each element of N1N2 · · ·Nk has a unique representation
g1g2 · · · gk with gi ∈ Ni for each i, whence |G| = |N1||N2| · · · |Nk|. We therefore conclude
from Q5 that G is the internal direct product of N1, N2, . . . , Nk.


