HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 7

2.8, Q2. Let G be a group of order 35 . Then since $35=5 \times 7$ as a product of primes, and $7>5$ with $5 \nmid(7-1)$, we find from Theorem 2.8.5 that G is cyclic.
2.8 , Q4. We can formally construct a non-abelian group G of order 21 using two generators, namely a of order 3 and b of order 7 . Thus $a^{3}=b^{7}=e$. Every element of G can be written in the shape $a^{i} b^{j}$ with $0 \leq i<3$ and $0 \leq j<7$, with the canonical group law, provided that we write $b a$ in such a form. Notice that all 21 of these elements are distinct. We can apply the corollary to Lemma 2.8 .3 with $p=7$ and $q=3$ to see that $a^{-1} b a=b^{i}$ for some integer i with $0 \leq i<7$. But, since $a^{3}=e$, we can argue as in the proof of Theorem 2.8.5 that $b=a^{-3} b a^{3}=b^{i^{3}}$. Thus, since b has order 7, we find that this is consistent only when $i^{3} \equiv 1(\bmod 7)$, so that $i=1,2$ or 4 . The case $i=1$ corresponds to the abelian relation $b a=a b$, and we may ignore this since we seek a non-abelian group of order 21. Thus we may take either $b a=a b^{2}$ or $b a=a b^{4}$, and both relations yield a non-abelian group of order 21. Notice that $b^{m} a=a b^{i m}$ for each m, and thus any product $\left(a^{l} b^{j}\right)\left(a^{l^{\prime}} b^{j^{\prime}}\right)$ can be rewritten in the form $a^{l^{\prime \prime}} b^{j^{\prime \prime}}$ for suitable $l^{\prime \prime}$ and $j^{\prime \prime}$.
2.8, Q5. Let G be a group of order $p^{n} m$ with p prime, $p \nmid m$, and suppose that $P \triangleleft G$ satisfies $|P|=p^{n}$. We claim that P is the only normal subgroup of G having order p^{n}. Suppose, by way of deriving a contradiction, that there is a second such subgroup, say Q. Then $P \cap Q \triangleleft P$ and $|P \cap Q|<|P|$. By the Second Homomorphism Theorem, we then have $P /(P \cap Q) \cong(P Q) / Q$, whence $|P Q|=|P| \cdot|Q| /|P \cap Q|>|Q|=p^{n}$. But by Lagrange's theorem, the order of $P \cap Q$ is a power of p, and thus $P Q$ is a subgroup of G having order p^{k} with $k>n$. This yields a contradiction, since $p^{k} \nmid|G|$, and so we conclude that P is indeed the only normal subgroup of G of order p^{n}. Suppose next that θ is an automorphism of G. Then given $g \in G$, there exists $h \in G$ with $\theta(h)=g$, and thus $g^{-1} \theta(P) g=\theta(h)^{-1} \theta(P) \theta(h)=\theta\left(h^{-1} P h\right)=\theta(P)$, by the normality of P in G. Since $\theta(P) \leq G$, it follows that $\theta(P) \triangleleft G$. But $|\theta(P)|=|P|=p^{n}$, and P is the only normal subgroup of G having order p^{n}. We are therefore forced to conclude that $\theta(P)=P$ for all automorphisms θ of G.
2.8, Q8. Let G be a group of order 99. It follows from Cauchy's theorem that G contains an element a of order 11, and hence a subgroup $A=\langle a\rangle$ of order 11. We claim that A is the only subgroup of G of order 11 . For if B is a subgroup of order 11 and $B \neq A$, then just as in the proof of Lemma 2.8.3 we find that $A B$ is a subset of G having $11^{2}>|G|$ elements, which yields a contradiction. Then A is indeed the only subgroup of G having 11 elements, whence $g^{-1} A g=A$ for all $g \in G$. Hence $A \triangleleft G$ and G has a nontrivial normal subgroup.
2.8, Q9. By Cauchy's theorem, a group G of order 42 has elements of order 2, 3 and 7 . Suppose that a is an element of order 7 , and put $A=\langle a\rangle$. We claim that A is the only subgroup of G of order 7. For if B is a subgroup of order 7 and $B \neq A$, then just as in the proof of Lemma 2.8.3 we find that $A B$ is a subset of G having $7^{2}>|G|$ elements, which yields a contradiction. Then A is indeed the only subgroup of G having 7 elements, whence $g^{-1} A g=A$ for all $g \in G$. Hence $A \triangleleft G$ and G has a nontrivial normal subgroup.
2.8, Q10. Let G be a group of order 42. Then we know that G has a normal subgroup N of order 7 . Write $G^{\prime}=G / N$. Then Theorem 2.6.2 shows that there is a surjective homomorphism
$\psi: G \rightarrow G^{\prime}$ with $\operatorname{ker}(\psi)=N$. Since $\left|G^{\prime}\right|=|G| /|N|=42 / 7=6$, it follows from Cauchy's theorem that G^{\prime} has an element b of order 3. Put $H^{\prime}=\langle b\rangle$. Then from Lemma 2.8.3 we see that $H^{\prime} \triangleleft G^{\prime}$. Putting $H=\left\{g \in G: \psi(g) \in H^{\prime}\right\}$, we find from the Correspondence Theorem that $H \triangleleft G$ and $H / N \cong H^{\prime}$. But then $3=\left|H^{\prime}\right|=|H| /|N|=|H| / 7$, whence $|H|=21$. So there is indeed a normal subgroup H of G having order 21.
2.8, Q12. Let G be a non-abelian group of order 21. Then by Cauchy's theorem, we find that G has an element a of order 3, and an element b of order 7, and these elements are necessarily distinct. Moreover, the corollary to Lemma 2.8.3 shows that one necessarily has $a^{-1} b a=b^{i}$ for some integer i with $0 \leq i<7$. As we saw in question 4 , one must then have $i=2$ or 4 if G is to be non-abelian. Thus, the group G is isomorphic to one of the two groups corresponding to these values of i defined in question 4. For $i=2$ and 4, consider the group G_{i} corresponding to i with generators a_{i} and b_{i} satisfying $a_{i}^{3}=b_{i}^{7}=e_{i}$ and $b_{i} a_{i}=a b_{i}^{i}$. We consider the map $\varphi: G_{2} \rightarrow G_{4}$ defined by taking $\varphi\left(a_{2}^{m} b_{2}^{n}\right)=a_{4}^{2 m} b_{4}^{4 n}$. Thus $\varphi\left(a_{2}\right)=a_{4}^{2}$ and $\varphi\left(b_{2}\right)=b_{4}^{4}$. It is apparent that this defines a bijection by considering the inverse map $\psi: G_{4} \rightarrow G_{2}$ defined by taking $\psi\left(a_{4}^{m} b_{2}^{n}\right)=$ $a_{2}^{2 m} b_{2}^{2 n}$. The homomorphism property of φ is confirmed by observing that

$$
\begin{aligned}
\varphi\left(a_{2}^{m} b_{2}^{n} a_{2}^{m^{\prime}} b_{2}^{n^{\prime}}\right) & =\varphi\left(a_{2}^{m+m^{\prime}} b_{2}^{n 2^{m^{\prime}}+n^{\prime}}\right)=a_{4}^{2 m+2 m^{\prime}} b_{4}^{4 n 2^{m^{\prime}}+4 n^{\prime}}=a_{4}^{2 m+2 m^{\prime}}\left(b_{4}^{4}\right)^{n 4^{2 m^{\prime}}+n^{\prime}} \\
& =a_{4}^{2 m}\left(b_{4}^{4}\right)^{n} a_{4}^{2 m^{\prime}}\left(b_{4}^{4}\right)^{n^{\prime}}=\varphi\left(a_{2}^{m} b_{2}^{n}\right) \varphi\left(a_{2}^{m^{\prime}} b_{2}^{n^{\prime}}\right)
\end{aligned}
$$

Then $G_{2} \cong G_{4}$, and we see that any two non-abelian groups of order 21 are isomorphic.
2.9, Q1. Define the map $\varphi: G_{1} \times G_{2} \rightarrow G_{2} \times G_{1}$ by taking $\varphi\left(g_{1}, g_{2}\right)=\left(g_{2}, g_{1}\right)$. By considering the inverse map $\psi: G_{2} \times G_{1} \rightarrow G_{1} \times G_{2}$ defined by putting $\psi\left(g_{2}, g_{1}\right)=\left(g_{1}, g_{2}\right)$, we see that φ is a bijection. Moreover, when $\left(g_{1}, g_{2}\right)$ and $\left(h_{1}, h_{2}\right)$ both lie in $G_{1} \times G_{2}$, one finds that $\varphi\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right)=\varphi\left(g_{1} h_{1}, g_{2} h_{2}\right)=\left(g_{2} h_{2}, g_{1} h_{1}\right)=\left(g_{2}, g_{1}\right)\left(h_{2}, h_{1}\right)=\varphi\left(g_{1}, g_{2}\right) \varphi\left(h_{1}, h_{2}\right)$, so that φ satisfies the homomorphism property. Thus φ is an isomorphism, and one has $G_{1} \times G_{2} \cong G_{2} \times G_{1}$.
2.9, Q2. Suppose that G_{1} and G_{2} are cyclic groups of respective orders m and n. We have that $G_{1} \times G_{2}$ is cyclic with generator (a, b) if and only if (a, b) has order $m n=\left|G_{1} \times G_{2}\right|$. But the order of a divides m and the order of b divides n. Suppose that $(m, n)=d$. Then $(a, b)^{m n / d}=\left(\left(a^{m}\right)^{n / d},\left(b^{n}\right)^{m / d}\right)=(e, e)$, so that (a, b) has order dividing $m n / d$. In particular, if $d=(m, n)>1$, then (a, b) has order smaller than $m n$ and $G_{1} \times G_{2}$ cannot be cyclic. When $(m, n)=1$, meanwhile, we may assume that $G_{1}=\langle a\rangle$ and $G_{2}=\langle b\rangle$ with a of order m and b of order n. If $(e, e)=(a, b)^{r}=\left(a^{r}, b^{r}\right)$, then $m \mid r$ and $n \mid r$, whence $m n \mid r$, and so (a, b) has order $m n$ and $G_{1} \times G_{2}=\langle(a, b)\rangle$, so that $G_{1} \times G_{2}$ is cyclic. Thus $G_{1} \times G_{2}$ is cyclic if and only if $(m, n)=1$.
2.9, Q3. (a) Define the map $\varphi: G \rightarrow T$ by taking $g \mapsto(g, g)$. Then φ is plainly well-defined and surjective. Moreover, one has $\varphi(g)=\varphi(h)$ if and only if $(g, g)=(h, h)$, which holds if and only if $g=h$, and so φ is also injective. Finally, whenever $g, h \in G$, one has $\varphi(g h)=(g h, g h)=(g, g)(h, h)=\varphi(g) \varphi(h)$, so φ is a homomorphism. Thus, the map φ is an isomorphism, and so $T \cong G$.
(b) If G is abelian, then given any element $(a, a) \in T$, whenever $(g, h) \in A$ one has $(g, h)^{-1}(a, a)(g, h)=\left(g^{-1} a g, h^{-1} a h\right)=\left(g^{-1} g a, h^{-1} h a\right)=(a, a)$. Hence, for all $\gamma \in A$ one has $\gamma^{-1} T \gamma=T$, whence $T \triangleleft A$. If, on the other hand, one has $T \triangleleft A$, then for all $a, b \in G$ one has $(e, b)^{-1}(a, a)(e, b) \in A$, whence for some element $c \in G$ one has $\left(a, b^{-1} a b\right)=(c, c)$. Thus $c=a$ and $b^{-1} a b=c=a$. We therefore conclude that for all $a, b \in G$ one has $a b=b a$, which is to say that G is abelian. Thus $T \triangleleft A$ if and only if G is abelian.
2.9, Q5. Suppose that $G=N_{1} N_{2} \cdots N_{k}$ and some element $g \in G$ has more than one representation in the form $g=g_{1} g_{2} \cdots g_{k}$, with $g_{i} \in N_{i}$ for each i. Then one must have $|G|<\left|N_{1}\right|\left|N_{2}\right| \cdots\left|N_{k}\right|$, yielding a contradiction. Thus each element $g \in G$ must have a unique representation in the form $g=g_{1} g_{2} \cdots g_{k}$, with $g_{i} \in N_{i}$ for each i, so that G is the internal direct product of $N_{1}, N_{2}, \ldots, N_{k}$.
2.9, Q6. For each i, write $M_{i}=N_{1} N_{2} \cdots N_{i-1} N_{i+1} \cdots N_{k}$. Observe that whenever $j \neq i$ and $g_{j} \in N_{j}$, one has $g_{j}=e e \cdots e g_{j} e \cdots e \in M_{i}$. Thus, if $N_{i} \cap M_{i}=\{e\}$ for each i, then we have $N_{i} \cap N_{j}=\{e\}$ whenever $i \neq j$. The Corollary to Lemma 2.9.3 therefore shows that whenever $g_{i} \in N_{i}$, then g_{i} commutes with every element of $N_{j}(j \neq i)$, and hence with every element of M_{i}. But then, if $g_{i}, h_{i} \in N_{i}(1 \leq i \leq k)$, one has that $g_{1} \cdots g_{k}=$ $h_{1} \cdots h_{k}$ if and only if $e=g_{k}^{-1} \cdots g_{2}^{-1}\left(g_{1}^{-1} h_{1}\right) h_{2} \cdots h_{k}=\left(g_{1}^{-1} h_{1}\right)\left(g_{2}^{-1} h_{2}\right) \cdots\left(g_{k}^{-1} h_{k}\right)$. The latter holds if and only if $h_{1}^{-1} g_{1}=\left(g_{2}^{-1} h_{2}\right) \cdots\left(g_{k}^{-1} h_{k}\right) \in M_{1}$. Since $h_{1}^{-1} g_{1} \in N_{1}$ and $N_{1} \cap M_{1}=\{e\}$, it follows that $h_{1}^{-1} g_{1}=e$ and thus $g_{1}=h_{1}$. We can repeat this argument now with the index 2 in place of 1 , and proceeding inductively, we deduce that $g_{i}=h_{i}$ for each i. Thus, each element of $N_{1} N_{2} \cdots N_{k}$ has a unique representation $g_{1} g_{2} \cdots g_{k}$ with $g_{i} \in N_{i}$ for each i, whence $|G|=\left|N_{1}\right|\left|N_{2}\right| \cdots\left|N_{k}\right|$. We therefore conclude from Q5 that G is the internal direct product of $N_{1}, N_{2}, \ldots, N_{k}$.

