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2.10, Q1. Suppose that for some a 6= e, one has a ∈ A ∩ 〈b〉 with b of order p. Then, for some
integer r with 1 ≤ r < p, one has a = br. Since (r, p) = 1, there is an integer s with
rs ≡ 1 (mod p), and we have b = brs = as ∈ A. But this contradicts our assumption
that b 6∈ A, and thus A ∩ 〈b〉 = {e}.

2.10, Q3. (a) Suppose that the order of a in G is d. Then (aN)d = adN = eN = N . If the order
of aN in G/N is r, meanwhile, then since (d, r) = ud + vr for some integers u and v,
we have (aN)(d,r) = ((aN)d)u((aN)r)v = N , so that r ≤ (d, r). Hence r = (d, r), which
shows that r|d, which is to say that o(aN) divides o(a).
(b) If the order of aN is r and r < d = o(a), then arN = (aN)r = N , whence ar ∈ N , yet
ar 6= e. Thus 〈a〉∩N contains ar 6= e, contradicting the assumption that 〈a〉∩N = {e}.
It follows that when 〈a〉 ∩N = {e}, then o(aN) = o(a).

2.10, QA. Observe that 240 = 24 · 3 · 5. Then, by the classification theorem for finite abelian
groups, representatives of the isomorphism classes of abelian groups of order 240 are
given by

Z2 × Z2 × Z2 × Z2 × Z3 × Z5
∼= Z2 × Z2 × Z2 × Z30

Z2 × Z2 × Z4 × Z3 × Z5
∼= Z2 × Z2 × Z60

Z4 × Z4 × Z3 × Z5
∼= Z4 × Z60

Z2 × Z8 × Z3 × Z5
∼= Z2 × Z120

Z16 × Z3 × Z5
∼= Z240.

2.10, QB. Observe that 540 = 22 · 33 · 5. Then, by the classification theorem for finite abelian
groups, representatives of the isomorphism classes of abelian groups of order 540 are
given by

Z2 × Z2 × Z3 × Z3 × Z3 × Z5
∼= Z3 × Z6 × Z30

Z2 × Z2 × Z3 × Z9 × Z5
∼= Z6 × Z90

Z2 × Z2 × Z27 × Z5
∼= Z2 × Z270

Z4 × Z3 × Z3 × Z3 × Z5
∼= Z3 × Z3 × Z60

Z4 × Z3 × Z9 × Z5
∼= Z3 × Z180

Z4 × Z27 × Z5
∼= Z540.

2.11, Q1. Using cycle notation, we can write S3 = {e, (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)}. One
can then check that (2, 3)−1(1, 2)(2, 3) = (1, 3) and (1, 3)−1(1, 2)(1, 3) = (2, 3), and so
on, so that

cl(e) = {e}, cl((1, 2)) = {(1, 2), (1, 3), (2, 3)}, cl((1, 2, 3)) = {(1, 2, 3), (1, 3, 2)}.
Also,

C((1, 2)) = {e, (1, 2)}, C((1, 3)) = {e, (1, 3)}, C((2, 3)) = {e, (2, 3)},
C(e) = S3, C((1, 2, 3)) = C((1, 3, 2)) = {e, (1, 2, 3), (1, 3, 2)}.

Thus, the indices of the distinct conjugacy classes are

iS3(e) = |S3| = 6, iS3(C((1, 2))) = 6/2, iS3(C((1, 2, 3))) = 6/3.
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Hence, the class equation yields

|S3| = 6 =
6

6
+

6

2
+

6

3
=

∑
a

|S3|
|C(a)|

.

2.11, Q3. One has

C(x−1ax) = {y ∈ G : y−1(x−1ax)y = x−1ax} = {y ∈ G : (xyx−1)−1a(xyx−1) = a}
= {x−1zx ∈ G : z ∈ C(a)} = x−1C(a)x.

2.11, Q4. If ϕ is an automorphism of G, then C(ϕ(a)) = {x ∈ G : x−1ϕ(a)x = ϕ(a)}. But since
ϕ is an automorphism, for each x ∈ G there exists y ∈ G with ϕ(y) = x, whence (using
the homomorphism property of ϕ), we obtain ϕ(a) = x−1ϕ(a)x = ϕ(y)−1ϕ(a)ϕ(y) =
ϕ(y−1ay). Since ϕ is an automorphism, it possesses an inverse, and hence a = y−1ay. So
C(ϕ(a)) = {x ∈ G : y ∈ C(a)} = {x ∈ G : ϕ−1(x) ∈ C(a)} = {x ∈ G : x ∈ ϕ(C(a))},
whence C(ϕ(a)) = ϕ(C(a)).

2.11, Q5. Suppose that |G| = p3 and Z(G) ≥ p2. By Lagrange’s theorem, since Z(G) C G,
one has that |Z(G)| divides |G|, so that |Z(G)| is either p2 or p3. In the latter case
Z(G) = G and so G is abelian. In the former case we have |G/Z(G)| = p, so that the
quotient group G/Z(G) is cyclic. But then homework 2.6.11 shows that G is abelian.

2.11, Q9. Plainly e ∈ N(H), so N(H) is non-empty. Next, whenever g, h ∈ N(H), one has
g−1Hg = H and h−1Hh = H, whence also hHh−1 = H. Thus (gh−1)−1H(gh−1) =
h(g−1Hg)h−1 = hHh−1 = H, so that gh−1 ∈ N(H). Then by the subgroup criterion,
we see that N(H) ≤ G. Also, trivially, whenever h ∈ H one has h−1Hh ⊆ H, so that
h ∈ N(H). This shows that H ⊆ N(H). Moreover, whenever x ∈ N(H), one has
x−1Hx = H, so that H C N(H).

2.11, Q13. Suppose that G is a finite group and H ≤ G. Let us define a relation on G by defining
x ∼ y when x−1Hx = y−1Hy. This relation is easily seen to be reflexive, symmetric and
transitive, and hence defines an equivalence relation on G. We find that x ∼ y if and
only if H = (xy−1)−1Hxy−1, so that xy−1 ∈ N(H). In this way we find that x ∼ y if and
only if x ∈ N(H)y. Then the distinct subgroups x−1Hx are in bijective correspondence
with the right cosets of G/N(H). But then the number of distinct subgroups x−1Hx is
equal to |G/N(H)| = |G|/|N(H)| = iG(N(H)).


