HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 8

2.10, Q1. Suppose that for some $a \neq e$, one has $a \in A \cap\langle b\rangle$ with b of order p. Then, for some integer r with $1 \leq r<p$, one has $a=b^{r}$. Since $(r, p)=1$, there is an integer s with $r s \equiv 1(\bmod p)$, and we have $b=b^{r s}=a^{s} \in A$. But this contradicts our assumption that $b \notin A$, and thus $A \cap\langle b\rangle=\{e\}$.
2.10, Q3. (a) Suppose that the order of a in G is d. Then $(a N)^{d}=a^{d} N=e N=N$. If the order of $a N$ in G / N is r, meanwhile, then since $(d, r)=u d+v r$ for some integers u and v, we have $(a N)^{(d, r)}=\left((a N)^{d}\right)^{u}\left((a N)^{r}\right)^{v}=N$, so that $r \leq(d, r)$. Hence $r=(d, r)$, which shows that $r \mid d$, which is to say that $o(a N)$ divides $o(a)$.
(b) If the order of $a N$ is r and $r<d=o(a)$, then $a^{r} N=(a N)^{r}=N$, whence $a^{r} \in N$, yet $a^{r} \neq e$. Thus $\langle a\rangle \cap N$ contains $a^{r} \neq e$, contradicting the assumption that $\langle a\rangle \cap N=\{e\}$. It follows that when $\langle a\rangle \cap N=\{e\}$, then $o(a N)=o(a)$.
2.10, QA. Observe that $240=2^{4} \cdot 3 \cdot 5$. Then, by the classification theorem for finite abelian groups, representatives of the isomorphism classes of abelian groups of order 240 are given by

$$
\begin{aligned}
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{30} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{60} \\
& \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{60} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{120} \\
& \mathbb{Z}_{16} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{240}
\end{aligned}
$$

2.10, QB. Observe that $540=2^{2} \cdot 3^{3} \cdot 5$. Then, by the classification theorem for finite abelian groups, representatives of the isomorphism classes of abelian groups of order 540 are given by

$$
\begin{aligned}
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{6} \times \mathbb{Z}_{30} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{6} \times \mathbb{Z}_{90} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{27} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{270} \\
& \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{60} \\
& \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{180} \\
& \mathbb{Z}_{4} \times \mathbb{Z}_{27} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{540}
\end{aligned}
$$

2.11, Q1. Using cycle notation, we can write $S_{3}=\{e,(1,2),(2,3),(1,3),(1,2,3),(1,3,2)\}$. One can then check that $(2,3)^{-1}(1,2)(2,3)=(1,3)$ and $(1,3)^{-1}(1,2)(1,3)=(2,3)$, and so on, so that
$\operatorname{cl}(e)=\{e\}, \quad \operatorname{cl}((1,2))=\{(1,2),(1,3),(2,3)\}, \quad \operatorname{cl}((1,2,3))=\{(1,2,3),(1,3,2)\}$.
Also,

$$
\begin{aligned}
C((1,2)) & =\{e,(1,2)\}, \quad C((1,3))=\{e,(1,3)\}, \quad C((2,3))=\{e,(2,3)\} \\
C(e) & =S_{3}, \quad C((1,2,3))=C((1,3,2))=\{e,(1,2,3),(1,3,2)\}
\end{aligned}
$$

Thus, the indices of the distinct conjugacy classes are

$$
i_{S_{3}}(e)=\left|S_{3}\right|=6, \quad i_{S_{3}}(C((1,2)))=6 / 2, \quad i_{S_{3}}(C((1,2,3)))=6 / 3 .
$$

Hence, the class equation yields

$$
\left|S_{3}\right|=6=\frac{6}{6}+\frac{6}{2}+\frac{6}{3}=\sum_{a} \frac{\left|S_{3}\right|}{|C(a)|} .
$$

2.11, Q3. One has

$$
\begin{aligned}
C\left(x^{-1} a x\right) & =\left\{y \in G: y^{-1}\left(x^{-1} a x\right) y=x^{-1} a x\right\}=\left\{y \in G:\left(x y x^{-1}\right)^{-1} a\left(x y x^{-1}\right)=a\right\} \\
& =\left\{x^{-1} z x \in G: z \in C(a)\right\}=x^{-1} C(a) x .
\end{aligned}
$$

2.11, Q4. If φ is an automorphism of G, then $C(\varphi(a))=\left\{x \in G: x^{-1} \varphi(a) x=\varphi(a)\right\}$. But since φ is an automorphism, for each $x \in G$ there exists $y \in G$ with $\varphi(y)=x$, whence (using the homomorphism property of φ), we obtain $\varphi(a)=x^{-1} \varphi(a) x=\varphi(y)^{-1} \varphi(a) \varphi(y)=$ $\varphi\left(y^{-1} a y\right)$. Since φ is an automorphism, it possesses an inverse, and hence $a=y^{-1} a y$. So $C(\varphi(a))=\{x \in G: y \in C(a)\}=\left\{x \in G: \varphi^{-1}(x) \in C(a)\right\}=\{x \in G: x \in \varphi(C(a))\}$, whence $C(\varphi(a))=\varphi(C(a))$.
2.11, Q5. Suppose that $|G|=p^{3}$ and $Z(G) \geq p^{2}$. By Lagrange's theorem, since $Z(G) \triangleleft G$, one has that $|Z(G)|$ divides $|G|$, so that $|Z(G)|$ is either p^{2} or p^{3}. In the latter case $Z(G)=G$ and so G is abelian. In the former case we have $|G / Z(G)|=p$, so that the quotient group $G / Z(G)$ is cyclic. But then homework 2.6.11 shows that G is abelian.
2.11, Q9. Plainly $e \in N(H)$, so $N(H)$ is non-empty. Next, whenever $g, h \in N(H)$, one has $g^{-1} H g=H$ and $h^{-1} H h=H$, whence also $h H h^{-1}=H$. Thus $\left(g h^{-1}\right)^{-1} H\left(g h^{-1}\right)=$ $h\left(g^{-1} H g\right) h^{-1}=h H h^{-1}=H$, so that $g h^{-1} \in N(H)$. Then by the subgroup criterion, we see that $N(H) \leq G$. Also, trivially, whenever $h \in H$ one has $h^{-1} H h \subseteq H$, so that $h \in N(H)$. This shows that $H \subseteq N(H)$. Moreover, whenever $x \in N(H)$, one has $x^{-1} H x=H$, so that $H \triangleleft N(H)$.
2.11, Q13. Suppose that G is a finite group and $H \leq G$. Let us define a relation on G by defining $x \sim y$ when $x^{-1} H x=y^{-1} H y$. This relation is easily seen to be reflexive, symmetric and transitive, and hence defines an equivalence relation on G. We find that $x \sim y$ if and only if $H=\left(x y^{-1}\right)^{-1} H x y^{-1}$, so that $x y^{-1} \in N(H)$. In this way we find that $x \sim y$ if and only if $x \in N(H) y$. Then the distinct subgroups $x^{-1} H x$ are in bijective correspondence with the right cosets of $G / N(H)$. But then the number of distinct subgroups $x^{-1} H x$ is equal to $|G / N(H)|=|G| /|N(H)|=i_{G}(N(H))$.

