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2.11, Q15. Suppose that b ∈ B(N) and g ∈ G. Given any n ∈ N , we put a = gng−1. Then
n = g−1ag and, since N C G, we have a ∈ N and hence a−1ba = b. Moreover, we
see that n−1(g−1bg)n = (g−1a−1g)(g−1bg)(g−1ag) = g−1(a−1ba)g = g−1bg. Since this
relation holds for all n ∈ N , we must conclude that g−1bg ∈ B(N). This relation holds
for all b ∈ B(N) and all g ∈ G, and thus B(N) C G.

2.11, Q16. By the first Sylow theorem, any group G of order 36 contains a Sylow 3-subgroup H
of order 9, and then iG(H) = |G|/|H| = 36/9 = 4. But 4! = 24 and 36 - 24, whence
|G| does not divide iG(H)!. Thus, by the conclusion of Q40 of section 2.5, the group
G contains a normal subgroup N 6= {e} contained in H Since |H| = 9, it follows from
Lagrange’s theorem that N has order 3 or 9.

2.11, Q18. Suppose that |G| = pnm with p prime and p - m, and P is a Sylow p-subgroup of G.
We have P ≤ N(P ) ≤ N(N(P )) ≤ G, so the largest power of p dividing |N(P )| is
pn, and likewise the largest power of p dividing |N(N(P ))| is pn. Since P ≤ N(P ),
when x ∈ N(N(P )) we have x−1Px ≤ x−1N(P )x = N(P ). But |x−1Px| = |P | = pn, so
x−1Px is a Sylow p-subgroup of N(P ). But Sylow’s second theorem shows that all Sylow
p-subgroups of a given group are conjugate, and thus (since P is also a Sylow p-subgroup
of N(P )) there exists y ∈ N(P ) with y−1Py = x−1Px. But then the definition of N(P )
shows that y−1Py = P , so that x−1Px = P . We have therefore shown that, for all
x ∈ N(N(P )), we have x ∈ N(P ), whence N(N(P )) ≤ N(P ). But N(P ) ≤ N(N(P )),
and thus N(N(P )) = N(P ), as required.

2.11, Q20. Suppose that |G| = pnk with p prime and p - k. Then G has a Sylow p-subgroup of
order pn. Suppose that 1 ≤ l ≤ n and G has a subgroup H of order pl. We have noted
already that this property holds when l = n. It follows from Theorem 2.11.6 that H
has a normal subgroup N of order pl−1, and hence G also has the subgroup N of order
pl−1. By induction, therefore, the group G possesses a subgroup of order pm, for any
integer m with 0 ≤ m ≤ n. But then, whenever pm divides |G|, the group G possesses
a subgroup of order pm.

2.11, Q23. (a) For all a, b, c ∈ G, we have a = e−1ae with e ∈ H, so a ∼ a (reflexivity); b = h−1ah
for some h ∈ H if and only if a = g−1bg for some g (equal to h−1) in H, so a ∼ b if
and only if b ∼ a (symmetry); and b = h−1ah and c = g−1bg for some h, g ∈ H implies
c = (hg)−1a(hg) with hg ∈ H, so a ∼ b and b ∼ c implies a ∼ c (transitivity). Thus,
the relation ∼ is indeed an equivalence relation.
(b) Suppose that b = h−1ah and b = g−1ag with g, h ∈ H. Then g−1ag = h−1ah,
whence (gh−1)−1a(gh−1) = a, so that gh−1 ∈ C(a) ∩ H and hence g ∈ (C(a) ∩ H)h.
Thus (since this line of reasoning can be reversed), we see that for each fixed h the
number of choices for g with g−1ag = h−1ah is equal to |C(a) ∩ H|. The number of
elements in the equivalence class of a is therefore |G|/|C(a) ∩H| = iH(H ∩ C(a)).

2.11, Q24. (a) For all A,B,C ≤ G, we have A = e−1Ae with e ∈ H, so A ∼ A (reflexivity);
B = h−1Ah for some h ∈ H if and only if A = g−1Bg for some g (equal to h−1) in
H, so A ∼ B if and only if B ∼ A (symmetry); and B = h−1Ah and C = g−1Bg for
some h, g ∈ H implies C = (hg)−1A(hg) with hg ∈ H, so A ∼ B and B ∼ C implies
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A ∼ C (transitivity). Thus, the relation ∼ is indeed an equivalence relation on the set
of subgroups of G.
(b) Suppose that B = h−1Ah and B = g−1Ag with g, h ∈ H. Then g−1Ag = h−1Ah,
whence (gh−1)−1A(gh−1) = A, so that gh−1 ∈ N(A) ∩H and hence g ∈ (N(A) ∩H)h.
Thus (since this line of reasoning can be reversed), we see that for each fixed h the
number of choices for g with g−1Ag = h−1Ah is equal to |N(A) ∩ H|. The number of
elements in the equivalence class of A is therefore |G|/|N(A) ∩H| = iH(N(A) ∩H).

SG, QA. (a) By Theorem 2.11.6, if n ≥ 2 and G is a group of order pn, then G has a normal
subgroup of order pn−1 > 1, and hence cannot be simple.
(b) We apply Sylow’s third theorem. We suppose that p 6= 2 and |G| = 2pn with n ≥ 1.
Then G has pk + 1 Sylow p-subgroups for some integer k with (pk + 1)|2pn. If k ≥ 1,
then (pk + 1) - 2, and thus we must have k = 0. Then G has precisely one Sylow
p-subgroup, and so this must be fixed under conjugation and hence must be normal in
G. But then G cannot be simple. The same argument applies when |G| = 3pn (the case
with p = 3 having been proved in part (a)), since (pk + 1) - 3 when k ≥ 1. Likewise,
when |G| = 5pn, we have (pk+1) - 5 when k ≥ 1, and the same argument applies. Thus
no group of order 2pn, or 3pn, or 5pn can be simple when n ≥ 1 and p is prime.
(c) We proceed in a similar manner to part (b). When k ≥ 1 and p 6= 3, one has
(pk + 1) - 4, and thus (pk + 1) - |G| when |G| = 4pn and n ≥ 1. Then Sylow’s third
theorem shows that G has a unique, and hence normal, Sylow p-subgroup, whence G is
not simple.

SG, QB. (a) Let G be a group of order 56 = 7 · 23. By the third Sylow theorem, the number
of Sylow 7-subgroups is of the shape 1 + 7k for some k ∈ Z, and divides 56. Since
(7k + 1) - 56 for k ≥ 2, we find that there are 1 or 8 Sylow 7-subgroups of G. Similarly,
the number of Sylow 2- subgroups is of the shape 1 + 2k for some integer k, and divides
56. Since (2k + 1) - 56 when k 6= 0, 3, we find G has 1 or 7 Sylow 2-subgroups.
(b) Suppose that G has two distinct Sylow 7-subgroups. Each has order 7, so is cyclic,
and we may assume that these subgroups are 〈a〉 and 〈b〉, with a 6= b. Suppose that
these subgroups have non-trivial intersection. Then for some integers r and s with
1 ≤ r, s ≤ 6 we have ar = bs. But both a and b have order 7, so on choosing t with
rt ≡ 1 (mod 7), we find that a = art = bst, so that a ∈ 〈b〉 and hence 〈a〉 ≤ 〈b〉. But
〈a〉 and 〈b〉 have the same number of elements, so in fact these subgroups are equal,
leading to a contradiction. Thus any two Sylow 7-subgroups have trivial intersection. If
G has just 1 Sylow 7-subgroup, then this is fixed under conjugation and hence is normal,
and this shows that G is not simple. Suppose instead that G has 8 Sylow 7-subgroups.
These subgroups pairwise have trivial intersection. Each element of such a subgroup
different from e has order 7, so we see that G has at least 8 · (7 − 1) = 48 elements of
order 7. The number of elements of order a power of 2 is therefore at most 56− 48 = 8,
and this is the size of a Sylow 2-subgroup. So there is precisely one Sylow 2-subgroup
of order 8, which must be fixed under conjugation and is hence normal. Thus, again we
find that G cannot be simple.

SG, QC. Let G be a group of order 30 = 2 · 3 · 5. By applying the third Sylow theorem, we see
that G has 1 or 10 Sylow 3-subgroups, and 1 or 6 Sylow 5-subgroups. If G has just
1 Sylow 3-subgroup, then this is fixed under conjugation and is hence normal, so that
G is not simple. Likewise, if G has just 1 Sylow 5-subgroup, then this is fixed under
conjugation, so is normal, and hence G is not simple. We may therefore assume that G
has 10 Sylow 3-subgroups and 6 Sylow 5-subgroups. Any two Sylow 5-subgroups have
trivial intersection, so G contains at least 6 · (5− 1) = 24 elements of order 5. Similarly,
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we find that G contains at least 10 ·(3−1) = 20 elements of order 3. Then G contains at
least 24 + 20 = 44 elements, yielding a contradiction since |G| = 30. We must therefore
conclude that G is not simple.

SG, QD. (a) Groups of order 36 are already handled in Q16 of section 2.11 above. We may proceed
similarly in the remaining cases. Thus, if |G| = 12, we use the Sylow 2-subgroup H
of G of order 4 to see that |G| - iG(H)!, noting that 12 - 3! = (12/4)!. When instead
|G| = 24, we use the Sylow 2-subgroup H of G of order 8 to see that |G| - iG(H)!,
noting that 24 - 3! = (24/8)!. Finally, when |G| = 48, we use the Sylow 2-subgroup H
of G of order 16 to see that |G| - iG(H)!, noting that 48 - 3! = (48/16)!. In each case G
contains a normal subgroup N 6= {e} contained in H, and cannot be simple.
(b) Let G be a simple group of order n with 2 ≤ n ≤ 59. It follows from question A(a)
that n 6∈ {4, 8, 9, 16, 25, 27, 32, 49}, question A(b) that

n 6∈ {6, 10, 14, 15, 18, 22, 26, 33, 34, 35, 38, 39, 45, 46, 50, 51, 54, 55, 57, 58},
and question A(c) that n 6∈ {20, 28, 44, 52}. Questions B, C and D show that n 6∈
{12, 24, 30, 36, 48, 56}. All remaining integers with 2 ≤ n ≤ 59 are the primes

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59},
except for 40 and 42. When G is a group of order 40, Sylow’s third theorem shows that
it has a unique Sylow 5-subgroup, which must be normal, so that G is not simple. Also,
when G is a group of order 42, Sylow’s third theorem shows that it has a unique Sylow
7-subgroup, which must be normal, so that G is not simple. Thus we conclude that the
only simple groups of order smaller than 60 are the cyclic groups of prime order.


