HONORS ALGEBRA: SOLUTIONS TO HOMEWORK 9

2.11, Q15. Suppose that $b \in B(N)$ and $g \in G$. Given any $n \in N$, we put $a=g n g^{-1}$. Then $n=g^{-1} a g$ and, since $N \triangleleft G$, we have $a \in N$ and hence $a^{-1} b a=b$. Moreover, we see that $n^{-1}\left(g^{-1} b g\right) n=\left(g^{-1} a^{-1} g\right)\left(g^{-1} b g\right)\left(g^{-1} a g\right)=g^{-1}\left(a^{-1} b a\right) g=g^{-1} b g$. Since this relation holds for all $n \in N$, we must conclude that $g^{-1} b g \in B(N)$. This relation holds for all $b \in B(N)$ and all $g \in G$, and thus $B(N) \triangleleft G$.
2.11, Q16. By the first Sylow theorem, any group G of order 36 contains a Sylow 3-subgroup H of order 9 , and then $i_{G}(H)=|G| /|H|=36 / 9=4$. But $4!=24$ and $36 \nmid 24$, whence $|G|$ does not divide $i_{G}(H)$!. Thus, by the conclusion of Q40 of section 2.5, the group G contains a normal subgroup $N \neq\{e\}$ contained in H Since $|H|=9$, it follows from Lagrange's theorem that N has order 3 or 9 .
2.11, Q18. Suppose that $|G|=p^{n} m$ with p prime and $p \nmid m$, and P is a Sylow p-subgroup of G. We have $P \leq N(P) \leq N(N(P)) \leq G$, so the largest power of p dividing $|N(P)|$ is p^{n}, and likewise the largest power of p dividing $|N(N(P))|$ is p^{n}. Since $P \leq N(P)$, when $x \in N(N(P))$ we have $x^{-1} P x \leq x^{-1} N(P) x=N(P)$. But $\left|x^{-1} P x\right|=|P|=p^{n}$, so $x^{-1} P x$ is a Sylow p-subgroup of $N(P)$. But Sylow's second theorem shows that all Sylow p-subgroups of a given group are conjugate, and thus (since P is also a Sylow p-subgroup of $N(P)$) there exists $y \in N(P)$ with $y^{-1} P y=x^{-1} P x$. But then the definition of $N(P)$ shows that $y^{-1} P y=P$, so that $x^{-1} P x=P$. We have therefore shown that, for all $x \in N(N(P))$, we have $x \in N(P)$, whence $N(N(P)) \leq N(P)$. But $N(P) \leq N(N(P))$, and thus $N(N(P))=N(P)$, as required.
2.11, Q20. Suppose that $|G|=p^{n} k$ with p prime and $p \nmid k$. Then G has a Sylow p-subgroup of order p^{n}. Suppose that $1 \leq l \leq n$ and G has a subgroup H of order p^{l}. We have noted already that this property holds when $l=n$. It follows from Theorem 2.11 .6 that H has a normal subgroup N of order p^{l-1}, and hence G also has the subgroup N of order p^{l-1}. By induction, therefore, the group G possesses a subgroup of order p^{m}, for any integer m with $0 \leq m \leq n$. But then, whenever p^{m} divides $|G|$, the group G possesses a subgroup of order p^{m}.
2.11, Q23. (a) For all $a, b, c \in G$, we have $a=e^{-1} a e$ with $e \in H$, so $a \sim a$ (reflexivity); $b=h^{-1} a h$ for some $h \in H$ if and only if $a=g^{-1} b g$ for some g (equal to h^{-1}) in H, so $a \sim b$ if and only if $b \sim a$ (symmetry); and $b=h^{-1} a h$ and $c=g^{-1} b g$ for some $h, g \in H$ implies $c=(h g)^{-1} a(h g)$ with $h g \in H$, so $a \sim b$ and $b \sim c$ implies $a \sim c$ (transitivity). Thus, the relation \sim is indeed an equivalence relation.
(b) Suppose that $b=h^{-1} a h$ and $b=g^{-1} a g$ with $g, h \in H$. Then $g^{-1} a g=h^{-1} a h$, whence $\left(g h^{-1}\right)^{-1} a\left(g h^{-1}\right)=a$, so that $g h^{-1} \in C(a) \cap H$ and hence $g \in(C(a) \cap H) h$. Thus (since this line of reasoning can be reversed), we see that for each fixed h the number of choices for g with $g^{-1} a g=h^{-1} a h$ is equal to $|C(a) \cap H|$. The number of elements in the equivalence class of a is therefore $|G| /|C(a) \cap H|=i_{H}(H \cap C(a))$.
2.11, Q24. (a) For all $A, B, C \leq G$, we have $A=e^{-1} A e$ with $e \in H$, so $A \sim A$ (reflexivity); $B=h^{-1} A h$ for some $h \in H$ if and only if $A=g^{-1} B g$ for some g (equal to h^{-1}) in H, so $A \sim B$ if and only if $B \sim A$ (symmetry); and $B=h^{-1} A h$ and $C=g^{-1} B g$ for some $h, g \in H$ implies $C=(h g)^{-1} A(h g)$ with $h g \in H$, so $A \sim B$ and $B \sim C$ implies
$A \sim C$ (transitivity). Thus, the relation \sim is indeed an equivalence relation on the set of subgroups of G.
(b) Suppose that $B=h^{-1} A h$ and $B=g^{-1} A g$ with $g, h \in H$. Then $g^{-1} A g=h^{-1} A h$, whence $\left(g h^{-1}\right)^{-1} A\left(g h^{-1}\right)=A$, so that $g h^{-1} \in N(A) \cap H$ and hence $g \in(N(A) \cap H) h$. Thus (since this line of reasoning can be reversed), we see that for each fixed h the number of choices for g with $g^{-1} A g=h^{-1} A h$ is equal to $|N(A) \cap H|$. The number of elements in the equivalence class of A is therefore $|G| /|N(A) \cap H|=i_{H}(N(A) \cap H)$.
SG, QA. (a) By Theorem 2.11.6, if $n \geq 2$ and G is a group of order p^{n}, then G has a normal subgroup of order $p^{n-1}>1$, and hence cannot be simple.
(b) We apply Sylow's third theorem. We suppose that $p \neq 2$ and $|G|=2 p^{n}$ with $n \geq 1$. Then G has $p k+1$ Sylow p-subgroups for some integer k with $(p k+1) \mid 2 p^{n}$. If $k \geq 1$, then $(p k+1) \nmid 2$, and thus we must have $k=0$. Then G has precisely one Sylow p-subgroup, and so this must be fixed under conjugation and hence must be normal in G. But then G cannot be simple. The same argument applies when $|G|=3 p^{n}$ (the case with $p=3$ having been proved in part (a)), since $(p k+1) \nmid 3$ when $k \geq 1$. Likewise, when $|G|=5 p^{n}$, we have $(p k+1) \nmid 5$ when $k \geq 1$, and the same argument applies. Thus no group of order $2 p^{n}$, or $3 p^{n}$, or $5 p^{n}$ can be simple when $n \geq 1$ and p is prime.
(c) We proceed in a similar manner to part (b). When $k \geq 1$ and $p \neq 3$, one has $(p k+1) \nmid 4$, and thus $(p k+1) \nmid|G|$ when $|G|=4 p^{n}$ and $n \geq 1$. Then Sylow's third theorem shows that G has a unique, and hence normal, Sylow p-subgroup, whence G is not simple.
SG, QB. (a) Let G be a group of order $56=7 \cdot 2^{3}$. By the third Sylow theorem, the number of Sylow 7 -subgroups is of the shape $1+7 k$ for some $k \in \mathbb{Z}$, and divides 56 . Since $(7 k+1) \nmid 56$ for $k \geq 2$, we find that there are 1 or 8 Sylow 7 -subgroups of G. Similarly, the number of Sylow 2- subgroups is of the shape $1+2 k$ for some integer k, and divides 56. Since $(2 k+1) \nmid 56$ when $k \neq 0,3$, we find G has 1 or 7 Sylow 2-subgroups.
(b) Suppose that G has two distinct Sylow 7 -subgroups. Each has order 7, so is cyclic, and we may assume that these subgroups are $\langle a\rangle$ and $\langle b\rangle$, with $a \neq b$. Suppose that these subgroups have non-trivial intersection. Then for some integers r and s with $1 \leq r, s \leq 6$ we have $a^{r}=b^{s}$. But both a and b have order 7 , so on choosing t with $r t \equiv 1(\bmod 7)$, we find that $a=a^{r t}=b^{s t}$, so that $a \in\langle b\rangle$ and hence $\langle a\rangle \leq\langle b\rangle$. But $\langle a\rangle$ and $\langle b\rangle$ have the same number of elements, so in fact these subgroups are equal, leading to a contradiction. Thus any two Sylow 7 -subgroups have trivial intersection. If G has just 1 Sylow 7 -subgroup, then this is fixed under conjugation and hence is normal, and this shows that G is not simple. Suppose instead that G has 8 Sylow 7 -subgroups. These subgroups pairwise have trivial intersection. Each element of such a subgroup different from e has order 7 , so we see that G has at least $8 \cdot(7-1)=48$ elements of order 7. The number of elements of order a power of 2 is therefore at most $56-48=8$, and this is the size of a Sylow 2-subgroup. So there is precisely one Sylow 2-subgroup of order 8, which must be fixed under conjugation and is hence normal. Thus, again we find that G cannot be simple.
SG, QC. Let G be a group of order $30=2 \cdot 3 \cdot 5$. By applying the third Sylow theorem, we see that G has 1 or 10 Sylow 3 -subgroups, and 1 or 6 Sylow 5 -subgroups. If G has just 1 Sylow 3-subgroup, then this is fixed under conjugation and is hence normal, so that G is not simple. Likewise, if G has just 1 Sylow 5 -subgroup, then this is fixed under conjugation, so is normal, and hence G is not simple. We may therefore assume that G has 10 Sylow 3 -subgroups and 6 Sylow 5 -subgroups. Any two Sylow 5 -subgroups have trivial intersection, so G contains at least $6 \cdot(5-1)=24$ elements of order 5 . Similarly,
we find that G contains at least $10 \cdot(3-1)=20$ elements of order 3 . Then G contains at least $24+20=44$ elements, yielding a contradiction since $|G|=30$. We must therefore conclude that G is not simple.
SG, QD. (a) Groups of order 36 are already handled in Q16 of section 2.11 above. We may proceed similarly in the remaining cases. Thus, if $|G|=12$, we use the Sylow 2-subgroup H of G of order 4 to see that $|G| \nmid i_{G}(H)$!, noting that $12 \nmid 3!=(12 / 4)$!. When instead $|G|=24$, we use the Sylow 2-subgroup H of G of order 8 to see that $|G| \nmid i_{G}(H)$!, noting that $24 \nmid 3!=(24 / 8)$!. Finally, when $|G|=48$, we use the Sylow 2-subgroup H of G of order 16 to see that $|G| \nmid i_{G}(H)!$, noting that $48 \nmid 3!=(48 / 16)!$. In each case G contains a normal subgroup $N \neq\{e\}$ contained in H, and cannot be simple.
(b) Let G be a simple group of order n with $2 \leq n \leq 59$. It follows from question A (a) that $n \notin\{4,8,9,16,25,27,32,49\}$, question $\mathrm{A}(\mathrm{b})$ that

$$
n \notin\{6,10,14,15,18,22,26,33,34,35,38,39,45,46,50,51,54,55,57,58\}
$$

and question $\mathrm{A}(\mathrm{c})$ that $n \notin\{20,28,44,52\}$. Questions B, C and D show that $n \notin$ $\{12,24,30,36,48,56\}$. All remaining integers with $2 \leq n \leq 59$ are the primes

$$
\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59\}
$$

except for 40 and 42 . When G is a group of order 40 , Sylow's third theorem shows that it has a unique Sylow 5 -subgroup, which must be normal, so that G is not simple. Also, when G is a group of order 42, Sylow's third theorem shows that it has a unique Sylow 7 -subgroup, which must be normal, so that G is not simple. Thus we conclude that the only simple groups of order smaller than 60 are the cyclic groups of prime order.

