1. Suppose that \(\overline{K} \) is an algebraic closure of \(K \), and assume that \(K \subseteq \overline{K} \). Take \(\alpha \in \overline{K} \) and suppose that \(\sigma : K \to \overline{K} \) is a homomorphism.

(a) Show that \(\sigma \) can be extended to a homomorphism \(\tau : \overline{K} \to \overline{K} \).

(b) Prove that the number of distinct roots of \(m_\alpha(K) \) in \(\overline{K} \) is equal to the number of distinct roots of \(\sigma(m_\alpha(K)) \) in \(\overline{K} \).

Solution: (a) Since \(\overline{K} \) is an algebraic extension of \(K \) with \(K \subseteq \overline{K} \), and \(\sigma : K \to \overline{K} \) is a homomorphism, Theorem 4.6 shows that \(\sigma \) extends to a homomorphism \(\tau : \overline{K} \to \overline{K} \).

(b) In \(\overline{K}[t] \), we have \(m_\alpha(K) = \prod_{i=1}^{d}(t - \gamma_i)^{r_i} \), where \(\gamma_1, \ldots, \gamma_d \) are distinct, and \(r_1, \ldots, r_d \in \mathbb{N} \). By part (b) there is a homomorphism \(\tau : \overline{K} \to \overline{K} \) extending \(\sigma \). Recall that \(\tau \) is necessarily injective. Then \(\sigma(m_\alpha(K)) = \tau(m_\alpha(K)) = \prod_{i=1}^{d}(t - \tau(\gamma_i))^{r_i} \). Since \(\tau \) is injective, one has that \(\tau(\gamma_1), \ldots, \tau(\gamma_d) \) are distinct, and the conclusion follows.

2. Suppose that \(L : K \) is an algebraic extension of fields.

(a) Show that \(\overline{L} \) is an algebraic closure of \(K \), and hence \(\overline{L} \simeq \overline{K} \).

(b) Suppose that \(K \subseteq L \subseteq \overline{L} \). Show that one may take \(\overline{K} = \overline{L} \).

Solution: (a) Consider \(L : K \) as an extension relative to the embedding \(\varphi \), and \(\overline{L} : L \) as an extension relative to the embedding \(\psi \). Then \(\overline{L} : K \) is an extension of fields relative to the embedding \(\psi \circ \varphi \), and since \(\overline{L} \) is algebraically closed, then \(\overline{L} \) is an algebraic closure of \(K \). Thus Proposition 4.9 shows that, since \(\overline{K} \) is also an algebraic closure of \(K \), then \(\overline{L} \simeq \overline{K} \).

(b) Suppose that there is a smaller algebraic closure \(\overline{K} \) of \(K \) than \(\overline{L} \). We may suppose that \(\overline{K} \) is an algebraic extension of \(K \) with \(K \subseteq \overline{K} \). We have that \(\overline{L} \) is an algebraic closure of \(K \) and \(K \subseteq \overline{L} \). Take \(\varphi : K \to \overline{L} \) to be the inclusion mapping. But then Theorem 4.6 shows that \(\varphi \) can be extended to a homomorphism from \(K \) into \(\overline{L} \). Thus \(\overline{L} : K \) is a field extension with \([\overline{L} : K] > 1 \) (since we are assuming that \(K \) is smaller than \(\overline{L} \)). But this contradicts the fact that \(\overline{K} \) is algebraically closed. Thus we may take \(\overline{K} = \overline{L} \), as claimed.

3. For each of the following polynomials, construct a splitting field \(L \) over \(\mathbb{Q} \) and compute the degree \([L : \mathbb{Q}] \).

(a) \(t^3 - 1 \)

(b) \(t^7 - 1 \)

Solution: (a) One has \(t^3 - 1 = (t - 1)(t - \omega)(t - \omega^2) \), where \(\omega = e^{2\pi i/3} = \frac{1}{2}(-1 + \sqrt{-3}) \).

So \(\mathbb{Q}(\omega) : \mathbb{Q} \) is a splitting field extension for \(t^3 - 1 \). We see that \((t^3 - 1)/(t - 1) = t^2 + t + 1 \) is monic, and it is easy to check that this polynomial has no linear factor and hence is irreducible. Hence \(m_\omega(\mathbb{Q}) = t^2 + t + 1 \), and \([\mathbb{Q}(\omega) : \mathbb{Q}] = 2 \).

(b) One has \(t^7 - 1 = (t - 1)(t - \zeta)(t - \zeta^2) \cdots (t - \zeta^6) \), where \(\zeta = e^{2\pi i/7} \). So \(\mathbb{Q}(\zeta) : \mathbb{Q} \) is a splitting field extension for \(t^7 - 1 \). We see that \((t^7 - 1)/(t - 1) = t^6 + \ldots + t + 1 \) is monic, and we have seen that \((t^p - 1)/(t - 1) \) is irreducible over \(\mathbb{Q} \) when \(p \) is prime. Hence \(m_\zeta(\mathbb{Q}) = t^6 + \ldots + t + 1 \), and \([\mathbb{Q}(\zeta) : \mathbb{Q}] = 6 \).

4. For each of the following polynomials, construct a splitting field \(L \) over \(\mathbb{Q} \) and compute the degree \([L : \mathbb{Q}] \).

(a) \(t^4 + t^2 - 6 \)

(b) \(t^5 - 16 \)
5. Suppose that

\[t^4 + t^2 - 6 = (t^2 - 2)(t^2 + 3) = (t + \sqrt{2})(t - \sqrt{2})(t + \sqrt{-3})(t - \sqrt{-3}). \]

Then with \(L = \mathbb{Q}(\sqrt{2}, \sqrt{-3}) \), we have that \(L : \mathbb{Q} \) is a splitting field extension for \(t^4 + t^2 - 6 \). The polynomial \(t^2 - 2 \) has \(\sqrt{2} \) as a root, and \(t^2 - 2 \) is irreducible by Eisenstein’s criterion using the prime 2. Thus \(m_{\sqrt{2}}(\mathbb{Q}) = t^2 - 2 \) and \([\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = \deg m_{\sqrt{2}}(\mathbb{Q}) = 2 \).

Put \(K = \mathbb{Q}(\sqrt{2}) \), and note that \(\sqrt{-3} \) is a root of the polynomial \(t^2 + 3 \). This polynomial is irreducible over \(K[t] \), since \(\sqrt{-3} \) is not real, and yet \(K \subset \mathbb{R} \). Thus \(m_{\sqrt{-3}}(K) = t^2 + 3 \) and \([K(\sqrt{-3}) : K] = \deg m_{\sqrt{-3}}(K) = 2 \). The tower law thus yields

\[[L : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{-3}) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2 \cdot 2 = 4. \]

(b) We have \(t^8 - 16 = t^8 - 2^4 = (t - \alpha)(t - \zeta \alpha) \cdots (t - \zeta^7 \alpha) \), where \(\alpha = \sqrt[4]{16} = \sqrt{2} \in \mathbb{R}_+ \) and \(\zeta = e^{2\pi i/8} \). Thus, with \(L = \mathbb{Q}(\alpha, \zeta \alpha, \zeta^2 \alpha, \ldots, \zeta^7 \alpha) \), we see that \(L : \mathbb{Q} \) is a splitting field extension for \(t^8 - 16 \). Note that \(\zeta(\alpha)/\alpha \in L \), and hence \(\mathbb{Q}(\alpha, \zeta) \subseteq L \). Also, for \(k \in \mathbb{N} \), one has \(\zeta^k \alpha \in \mathbb{Q}(\alpha, \zeta) \), and so \(L \subseteq \mathbb{Q}(\alpha, \zeta) \). We therefore conclude that \(L = \mathbb{Q}(\alpha, \zeta) \). Next, noting that \(m_{\alpha}(\mathbb{Q}) = t^2 - 2 \), we see that \([\mathbb{Q}(\alpha) : \mathbb{Q}] = 2 \). Also, we have \(\zeta = (1 + i)/i \), so \(\zeta - 1 \) is a root of the polynomial \(t^2 + 1 \), whence \(\zeta \) is a root of the polynomial \(\alpha^2 t^2 - 2 \alpha t + 2 = t^2 - 2 \alpha t + 2 \). But \(\zeta \not\in \mathbb{R} \), and so this polynomial is irreducible over \(\mathbb{Q}(\alpha) \). Thus \(m_{\zeta}(\mathbb{Q}(\alpha)) = t^2 - \alpha t + 1 \), and \([\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = 2 \). It therefore follows from the tower law that

\[[L : \mathbb{Q}] = [\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 4. \]

5. Suppose that \(L : K \) is a splitting field extension for the polynomial \(f \in K[t] \setminus K \).

(a) Prove that \([L : K] \leq (\deg f)! \).

(b) Prove that \([L : K] \) divides \((\deg f)! \).

Solution: (a) The conclusion in part (a) follows of course from that of part (b), but we nonetheless provide the slightly simpler argument available in this case. We use induction on \(n = \deg(f) \). In the base case \(n = 1 \), we have \([L : K] = 1 \), so the conclusion holds. Suppose now that \(n > 1 \) and that the desired conclusion holds for all polynomials of degree smaller than \(n \). Let \(\alpha \in L \) be any root of \(f \). Then \(f \) factors as \((t - \alpha)g \) for some polynomial \(g \in K(\alpha)[t] \) of degree \(n - 1 \). Moreover, we have that \(L \) is a splitting field for \(g \) over \(K(\alpha) \). By induction, we therefore see that \([L : K(\alpha)] \leq (n - 1)! \). Since \([K(\alpha) : K] = n \), the Tower Law shows that \([L : K] \leq n \cdot (n - 1)! = n \). This confirms the inductive step, and the desired conclusion follows.

(b) In the second case we again proceed by induction on \(n = \deg(f) \), and again the case \(n = 1 \) is immediate. Now, when \(n > 1 \), we split the argument according to whether \(f \) is reducible or not over \(K \). If \(f \) is irreducible, let \(\alpha \in L \) be any root of \(f \). Then \(f \) again factors as \((t - \alpha)g \) for some other polynomial \(g \in K(\alpha)[t] \) of degree \(n - 1 \). Moreover, we have that \(L \) is a splitting field for \(g \) over \(K(\alpha) \). By induction, we therefore see that \([L : K(\alpha)] \) divides \((n - 1)! \). Since \([K(\alpha) : K] = n \), the Tower Law shows that \([L : K] \) divides \(n \cdot (n - 1)! = n! \).

On the other hand, if \(f = gh \) is reducible, let \(M \) be the subfield of \(L \) generated by \(K \) and the roots of \(g \). Then \(M \) is a splitting field for \(g \) over \(K \) and \(L \) is a splitting field for \(h \) over \(M \). By induction, we have that \([M : K] \) divides \(r! \) and \([L : M] \) divides \((n - r)! \), where \(r = \deg(g) \). Hence \([L : K] = [L : M][M : K] \) divides \(r!(n - r)! \), which in turn divides \(n! \) (with quotient equal to the binomial coefficient \(\binom{n}{r} \)).

In either case, we confirm the inductive step, and the desired conclusion follows by induction.