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1. Introduction – motivation and history

The circle method was devised by Hardy and Ramanujan in 1918, with an important
variant due to Hardy and Littlewood in 1920 known as the Hardy-Littlewood method
(see [11] and [12], respectively). Hardy and Ramanujan were interested primarily in the
partition function p(n), which for each natural number n counts the number of ways of
writing n in the shape

n = x1 + . . .+ xs,

with s ∈ N and x1 > x2 > . . . > xs all natural numbers1. Hardy and Littlewood were
instead interested in Waring’s problem.

Conjecture 1.1 (E. Waring, 1770). All natural numbers are the sum of at most 4 squares
of natural numbers, or of at most 9 cubes of natural numbers, or of at most 19 fourth
powers of natural numbers, and so on.

In order to formulate a more precise statement, we introduce some notation.

Definition 1.2. Given k ∈ N, we define g(k) to be the least integer s having the property
that all natural numbers are the sum of at most s positive integral k-th powers.

Thus, whenever s > g(k), it follows that for each n ∈ N there exist non-negative
integers x1, . . . , xs having the property that

n = xk1 + . . .+ xks .

A more precise version of Conjecture 1.1 may now be formulated.

Conjecture 1.3. One has g(2) = 4, g(3) = 9, g(4) = 19, ..., and for each k ∈ N one
has g(k) <∞.

Before further discussion of Hardy and Littlewood’s ideas concerning the analysis of
Waring’s problem, we pause to consider what is known concerning this conjecture of
Waring. The starting point is a theorem of Lagrange from 1770 showing that all positive
integers are the sum of four squares of integers. Thus, for example, we have

2023 = 432 + 132 + 22 + 12.

Such representations need not be unique, even on ordering the summands, for we also
have

2023 = 372 + 252 + 52 + 22.

1In this course the natural numbers N are defined to be the set of positive integers {1, 2, . . .}.
1
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Moreover, the integer 2023 is not the sum of 3 or fewer squares of natural numbers. The
diligent reader might care to prove the latter assertion (hint: examine whether or not
the congruence x21 + x22 + x23 ≡ 2023 (mod 8) is soluble).

Investigations concerning larger exponents k culminated with the work of Hilbert [14]
in 1909, who applied polynomial identities to show that for each k ∈ N, one has g(k) <∞.
The method applied by Hilbert does not deliver satisfactorily explicit bounds on g(k).
It is worth noting that the representation of small numbers n leads to surprisingly large
lower bounds on g(k). Consider, for example, representations of the integer

n0 = 2k
⌊
(3/2)k

⌋
− 1,

in the shape n0 = xk1 + . . . + xks , with xi ∈ N. Since n0 < 3k, one finds that xi ∈ {1, 2}
for each i, and hence the most efficient representation has the shape

n0 = 2k + . . .+ 2k + 1k + . . .+ 1k,

with b(3/2)kc − 1 copies of 2k, and 2k − 1 copies of 1k. Hence

g(k) > 2k +
⌊
(3/2)k

⌋
− 2.

In fact, it is now known that g(k) = 2k +
⌊
(3/2)k

⌋
− 2, with the possible exception of a

finite number of values of k (which almost surely do not occur – see Mahler [21]). It is
known that if any exceptional exponent k occurs, then one necessarily has

2k
{

(3/2)k
}

+
⌊
(3/2)k

⌋
> 2k, (1.1)

and it was shown that this inequality fails for every exponent k 6 471, 600, 000 (see
Kubina and Wunderlich [16]). It is tempting to believe that progress on computational
power in the last three decades should permit this inequality to be checked for very much
larger values of k. Even in those exceptional circumstances where (1.1) holds, it is known
that

g(k) = 2k +
⌊
(3/2)k

⌋
+
⌊
(4/3)k

⌋
− 3

when
⌈
(4/3)k

⌉ ⌈
(3/2)k

⌉
> 2k + 1, and that

g(k) = 2k +
⌊
(3/2)k

⌋
+
⌊
(4/3)k

⌋
− 2

when
⌈
(4/3)k

⌉ ⌈
(3/2)k

⌉
= 2k + 1.

Motivated by the difficulty of representing certain small integers, we may seek instead
to understand the typical situation for large integers.

Definition 1.4. Given k ∈ N, define G(k) to be the least integer having the property
that whenever s > G(k), then all sufficiently large natural numbers are the sum of s
positive integral k-th powers.

Thus, when k ∈ N and s > G(k), there exists N0 = N0(s, k) such that, whenever
n > N0, then there exist x1, . . . , xs ∈ N having the property that n = xk1 + . . . + xks . A
relatively easy exercise (see the first problem sheet) confirms that when k > 2, one has
G(k) > k + 1. In brief, the sharpest upper bounds currently available are as follows:

G(2) = 4, a consequence of Lagrange’s theorem from 1770;

G(3) 6 7, due to Linnik, 1942;

G(4) = 16, due to Davenport, 1939;

G(5) 6 17, due to Vaughan and Wooley, 1995;
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G(6) 6 24, due to Vaughan and Wooley, 1994;

G(7) 6 31, due to Wooley, 2016;

G(8) 6 39, due to Wooley, 2016 (and it is known that G(8) > 32);

G(9) 6 47, due to Wooley, 2016;

and so on (see [8, 19, 20, 24, 25, 31]). In general, for large values of k, it was shown 30
years ago that

G(k) 6 k(log k + log log k + 2 + o(1)) (Wooley, 1992 and 1995),

where o(1)→ 0 as k →∞ (see [27, 28]). Within the past year, this longstanding upper
bound has been improved so that for all natural numbers k one has

G(k) 6 dk(log k + 4.20032)e (Brüdern and Wooley [5]).

Let us now return to Hardy and Littlewood in 1920, and indeed to Hardy and Ra-
manujan in 1918. Their idea was to write down a power series

gk(z) =
∞∑
m=1

zm
k

.

Note that this series is absolutely convergent for |z| < 1. If one now considers the
expression gk(z)s, one sees that

gk(z)s =

(
∞∑

m1=1

zm
k
1

)(
∞∑

m2=1

zm
k
2

)
. . .

(
∞∑

ms=1

zm
k
s

)

=
∞∑

m1=1

. . .
∞∑

ms=1

zm
k
1+...+m

k
s

=
∞∑
n=1

Rs,k(n)zn,

where we write

Rs,k(n) = card
{
m1, . . . ,ms ∈ N : mk

1 + . . .+mk
s = n

}
.

We can recover the coefficientsRs,k(n) by employing Cauchy’s integral formula to evaluate
a suitable contour integral. Thus

Rs,k(n) =
1

2πi

∫
C
gk(z)sz−n−1 dz,

in which C denotes a circular contour, centred at 0, and with radius r satisfying 0 < r < 1.
This was the age, after all, when methods from complex analysis seemed all-powerful,
and any opportunity to wield such methods was difficult to resist!

When k = 1, the series in question is g1(z) = z/(1 − z), and one is justified in being
optimistic concerning the computation of Rs,k(n). Hardy and Ramanujan were also able
to make progress in the case k = 2. But how should one approach this computation
when k > 2? This is where Hardy and Littlewood’s innovations come into play.

In order to prepare the ground for an explanation of such innovations, it is expedient
first to simplify the situation by making use of the observation made by I. M. Vinogradov
in the 1930’s to the effect that the infinite sums in question may be replaced by finite
Fourier series without losing any information concerning Rs,k(n). If one substitutes z =
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re(θ), in which (as usual in analytic number theory) we write e(θ) for e2πiθ, then one
sees initially that the series gk(z) can be replaced by an infinite Fourier series. Note that
whenever n = xk1 + . . .+ xks , one must have xi 6 n1/k. With this observation in mind, we
put X = bn1/kc and define

fk(θ) =
∑

16x6X

e(θxk).

We then have

fk(θ)
s =

( ∑
16x16X

e(θxk1)

)
. . .

( ∑
16xs6X

e(θxks)

)
=

∑
16x16X

. . .
∑

16xs6X

e(θ(xk1 + . . .+ xks))

=
∑

16m6sXk

R∗s,k(m)e(θm),

where

R∗s,k(m) = card
{
m1, . . . ,ms ∈ N ∩ [1, X] : mk

1 + . . .+mk
s = m

}
.

Thus, by applying the orthogonality relation∫ 1

0

e(θh) dθ =

{
0, when h ∈ Z \ {0},
1, when h = 0,

we deduce that∫ 1

0

fk(θ)
se(−θn) dθ =

∑
16m6sXk

R∗s,k(m)

∫ 1

0

e(θ(m− n)) dθ = Rs,k(n).

In this guise, the key insight of Hardy and Littlewood may be explained as follows.
When s is large enough in terms of k, there may be large contributions to the integral
yielding Rs,k(n) arising from those values of θ in small neighbourhoods of each rational
number a/q in which a ∈ Z, q ∈ N, (a, q) = 1 and q is small. Whilst this is certainly the
case when a = 0, q = 1 and 0 6 θ 6 1

8
X−k, in which case one has

|fk(θ)| > Re

( ∑
16x6X

e(1/8)

)
> X cos(π/4) = X/

√
2,

similar observations hold in wider generality. Meanwhile, when θ is not closely approx-
imated by a rational number with a small denominator, then the argument θxk may be
expected to be rather randomly distributed modulo 1, and hence the summands e(θxk)
should exhibit plenty of cancellation when they are summed over x.

When k = 1, Hardy and Ramanujan were able to evaluate their generating functions
asymptotically for all values of θ, and thereby obtain an asymptotic formula for Rs,k(n).
The method also applies even in the more delicate situation with k = 2. However,
when k > 3, the generating function fk(θ) could be evaluated only for θ lying on small
neighbourhoods of rational numbers having small denominators. Hardy and Littlewood
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labelled such a set the major arcs in their application of the circle method. In order to
motivate later discussion, consider a parameter δ with 0 < δ < 1 and the set

Mδ =
⋃

06a6q6Xδ

(a,q)=1

Mδ(q, a),

where

Mδ(q, a) = {θ ∈ [0, 1) : |θ − a/q| 6 Xδ−k}.
Provided that δ < 1/3 and X is sufficiently large, one sees that the major arcs Mδ(q, a)
are distinct and non-overlapping for 0 6 a 6 q 6 Xδ and (a, q) = 1. Provided that δ is
sufficiently small and θ ∈ Mδ(q, a) ⊆ Mδ, asymptotic formulae may be derived for the
generating functions fk(θ). Indeed, if we write

S(q, a) =

q∑
r=1

e(ark/q) and v(β) =

∫ X

0

e(βγk) dγ,

then we shall see that

fk(θ) = q−1S(q, a)v(θ − a/q) +O(X2δ).

Thus, when s is large enough in terms of k, and again for small enough values of δ, one
may obtain an asymptotic formula of the shape∫

Mδ

fk(θ)
se(−nθ) dθ ∼ Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1, (1.2)

as n → ∞. Here, we have written Γ(·) for the classical Gamma function defined for
Re(z) > 0 by putting

Γ(z) =

∫ ∞
0

tz−1e−t dt,

and Ss,k(n) is a real number reflecting the local solubility behaviour of the equation
n = xk1 + . . .+ xks (that is, the solubility of congruences corresponding to this equation).
We note in passing that in the contour integrals pursued by Hardy and Littlewood, the
sets corresponding to the major arcs Mδ(q, a) were indeed arcs contained within the
circular contour, and the moniker has stuck.

Since

Rs,k(n) =

∫ 1

0

fk(θ)
se(−θn) dθ,

the asymptotic analysis of Rs,k(n) will be completed by showing that the contribution
arising from the set mδ = [0, 1) \Mδ, the so-called minor arcs, is asymptotically smaller
than the contribution (1.2) arising from the major arcs. In Hardy and Ramanujan’s
treatment of the cases k = 1 and 2, the minor arcs are absent from the analysis, but for
k > 3 Hardy and Littlewood had somehow to estimate their contribution. Fortunately,
they were able to make use of very recent work of Weyl concerning equidistribution of
polynomials (see [26]). Thereby, they were able to show that when θ ∈ mδ, then for each
ε > 0 one has

fk(θ) = O(X1−δ21−k+ε).
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This permits one to show that for large enough values of s,∫
mδ

fk(θ)
se(−θn) dθ = o(ns/k−1),

whence

Rs,k(n) =

∫
Mδ

fk(θ)
se(−θn) dθ +

∫
mδ

fk(θ)
se(−θn) dθ

∼ Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1.

Provided that Ss,k(n) is bounded away from 0, one is able to infer that Rs,k(n)→∞ as
n→∞, establishing that G(k) 6 s. Indeed, Hardy and Littlewood were initially able to
establish such a conclusion whenever s > (k − 2)2k−1 + 5.

In the next several sections, our task will be to justify this sketch analysis. Rather
than following the initial analysis of Hardy and Littlewood too closely, we will instead
pursue a simpler treatment originating with work of Hua from 1938 (see [15]). This
argument permits the proof of an asymptotic formula for Rs,k(n) whenever s > 2k + 1,
and in particular establishes the bound G(k) 6 2k + 1 (k > 2).

Acknowledgements: This set of notes started life as a set of handwritten notes de-
veloped from courses given by the author at the University of Michigan and Harvard
University. The present set of LaTexed notes were typed in real time, with no doubt
many typos and oversights, at Purdue University in Spring 2023. I thank everyone who
has notified me of typos and corrections in an earlier version, including (but not limited
to) Yu-Ru Liu and Steve Fan.

2. A few notes on notation

We begin by recalling the Bachmann-Landau notation. When x is a real variable, the
function f(x) is complex valued, and g(x) is a non-negative real valued function of x,
we write f(x) = O(g(x)), as x → ∞, when there exists a constant C > 0 having the
property that, for all large enough values of x, one has

|f(x)| 6 Cg(x).

Equivalently, we may interpret f(x) = O(g(x)) as meaning that

lim sup
x→∞

|f(x)|
g(x)

<∞.

We note that mention of the limiting environment x→∞ is often suppressed and taken
as implicit. There are variants associated with limiting situations in which x→ x0. In a
similar manner, we write f(x) = o(g(x)) when

lim
x→∞

|f(x)|
g(x)

= 0.

Vinogradov’s notation seeks to summarise the Bachmann-Landau notation in a manner
that is less awkward in multi-step arguments. In the scenario just introduced, we write
f(x) � g(x) to mean that f(x) = O(g(x)). Also, we write f(x) � g(x) when both f
and g are non-negative and g(x) � f(x). Finally, we write f(x) � g(x) when one has
both f(x)� g(x) and g(x)� f(x).
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One should not confuse either notation with the statement that the functions f(x)
and g(x) have the same order of growth, a notion employed in some other subdisciplines
of mathematics. Thus, one has 3x + 1 � x2 as x → ∞, but not x2 � x. Also, one
has x2 log x � x2 and 3x2 + log x � x2. Finally, one has 3x2 + 1 � x2 + log x and
3x2 + 1 = o(x2 log x) as x→∞.

In analytic number theory, it is nearly ubiquitous that a special convention is employed
concerning the appearance of the letter ε. Thus, whenever a statement contains the
letter ε, then we assert that the statement holds for all positive values of ε. The implicit
quantifier renders the interpretation of ε as having a fixed value meaningless, and in this
sense the value of ε may change from statement to statement. Thus, we may write a
string of statements of the type: “we have f(x)� xε log x, whence f(x)� xε” without
further comment. If, on occasion, we wish to consider a fixed value of ε, then this is
clearly stated in so many words so as to avoid ambiguity concerning this ε-convention.

Other standard notation from analytic number theory used in this course includes the
following. When θ ∈ R, we write

bθc := max
n∈Z
n6θ

n, dθe := min
n∈Z
n>θ

n, {θ} := θ − bθc, ‖θ‖ := min
n∈Z
|θ − n|.

Also, when p and n are integers with |p| > 1, we write ph‖n when ph|n and ph+1 - n (that
is, when ph divides n and ph+1 does not divide n). Usually, we will employ this notation
with p a (positive) prime number.

3. Weyl’s inequality

We begin by considering pointwise bounds for the exponential sum

f(α) =
∑

16x6X

e(αxk)

with X large, seeking bounds of use on the minor arcs mδ. We begin with a consideration
of the situation when k = 1.

Lemma 3.1. Let X and Y be real numbers with Y > 1, and let α ∈ R. Then∑
X<x6X+Y

e(αx)� min
{
Y, ‖α‖−1

}
. (3.1)

We note that in the statement of this conclusion, we interpret min{Y, ‖0‖−1} as being
equal to Y .

Proof. On utilising the trivial upper bound |e(αx)| 6 1 for each x, one sees that the
left hand side of (3.1) is at most Y + 1, and this bound already suffices to establish the
desired conclusion when ‖α‖ = 0. When α 6= 0, meanwhile, by viewing the sum as a
geometric progression, one finds that∑

X<x6X+Y

e(αx) =
e (αbX + Y + 1c)− e (αbX + 1c)

e(α)− 1

� |e(α/2)− e(−α/2)|−1

� |sin(πα)|−1 .
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The function | sin(πα)| is periodic in α with period 1, and when 0 6 α 6 1/2, one may
check that 2α 6 sin(πα) 6 πα. We therefore infer that | sin(πα)| � ‖α‖, whence∑

X<x6X+Y

e(αx)� ‖α‖−1.

The conclusion of the lemma follows by combining this with the earlier trivial bound. �

This lemma provides a means of estimating exponential sums of degree 1, but what
about degrees k exceeding 1? An idea of Weyl (see [26]) permits one to reduce the degree
inductively to obtain an estimate in terms of linear exponential sums. In order to outline
this idea, consider a polynomial ψ(x) with real coefficients and the exponential sum

T (X) =
∑

16x6X

e(ψ(x)).

Using the fact that the complex conjugate of e(ψ(x)) is equal to e(−ψ(x)), one finds that

|T (X)|2 =
∑

16y6X

∑
16x6X

e (ψ(y)− ψ(x))

=
∑
|h|<X

∑
16x6X

16x+h6X

e (ψ(x+ h)− ψ(x)) ,

in which we have made the change of variable y = x+h. But one has ψ(x+h)−ψ(x) =
hψ1(x;h), where ψ1(x;h) is a polynomial in x and h having degree deg(ψ)−1 with respect
to x. Thus, we have

|T (X)|2 6
∑
|h|<X

∣∣∣∣∣ ∑
16x6X

16x+h6X

e (hψ1(x;h))

∣∣∣∣∣,
with the inner exponential sum being one having a polynomial argument of degree one
less than that of the original sum T (X). This idea may now be used repeatedly to
reduce the degree of the exponential sum under consideration until one is left in the
linear situation amenable to Lemma 3.1.

A careful analysis of this idea is facilitated by the introduction of some standard
notation. When ψ(x) is a real-valued function of x, we denote by ∆1 the forward difference
operator defined via

∆1(ψ(x);h) = ψ(x+ h)− ψ(x).

We then define ∆j for j > 2 recursively by means of the relation

∆j(ψ(x); h) = ∆j(ψ(x);h1, . . . , hj)

= ∆1 (∆j−1(ψ(x);h1, . . . , hj−1);hj) .

By convention, we take ∆0(ψ(x);h) = ψ(x). One may verify that when 1 6 j 6 k, one
has

∆j(x
k; h) = h1 . . . hjpj(x;h1, . . . , hj),

where pj is a polynomial in x of degree k− j with leading coefficient k!/(k− j)!. By the
linearity of the operator ∆j, one sees that

∆j(akx
k + . . .+ a1x; h) =

k∑
i=1

ai∆j(x
i; h),
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and so one is able easily to infer the structure of expressions of the shape ∆j(p(x); h),
for polynomial arguments p(x), by using what is known for the special case p(x) = xk.
We note, in particular, that when j > deg(p), then one has ∆j(p(x); h) = 0.

Lemma 3.2 (Weyl differencing). Let ψ(x) be a real-valued arithmetic function, and put

F (ψ) =
∑

16x6X

e(ψ(x)).

Then for each natural number j, one has

|F (ψ)|2j 6 (2X)2
j−j−1

∑
|h1|<X

· · ·
∑
|hj |<X

∑
x∈Ij(h)

e(∆j(ψ(x); h)), (3.2)

where Ij(h) denotes the interval of integers defined by putting I0(h) = [1, X], and, when
j > 2, by recursively setting

Ij(h1, . . . , hj) = Ij−1(h1, . . . , hj−1) ∩ {x ∈ [1, X] : x+ hj ∈ Ij−1(h1, . . . , hj−1)}.

We note for future reference that the intervals occurring in the statement of this lemma
satisfy the inclusions

Ij(h1, . . . , hj) ⊆ Ij−1(h1, . . . , hj−1) ⊆ . . . ⊆ I1(h1) ⊆ [1, X].

Proof. We proceed by induction. When j = 1, one has

|F (ψ)|2 =
∑

16x6X

∑
16y6X

e(ψ(y)− ψ(x))

=
∑

16x6X

∑
1−x6h16X−x

e(ψ(x+ h1)− ψ(x))

=
∑
|h1|<X

∑
x∈I1(h1)

e(∆1(ψ(x);h1)),

where I1(h1) = [1, X] ∩ [1− h1, X − h1]. This confirms (3.2) when j = 1.
Suppose now that (3.2) has been established for all integers j with 1 6 j < J . Then,

as a consequence of Cauchy’s inequality, one finds that

|F (ψ)|2J =
(
|F (ψ)|2J−1

)2
6
(

(2X)2
J−1−J

)2( ∑
|h1|<X

· · ·
∑

|hJ−1|<X

1

)
Ξ(ψ),

where

Ξ(ψ) =
∑
|h1|<X

· · ·
∑

|hJ−1|<X

∣∣∣∣∣ ∑
x∈IJ−1(h)

e(∆J−1(ψ(x); h))

∣∣∣∣∣
2

.

As in the case j = 1, one discerns that∣∣∣∣∣ ∑
x∈IJ−1(h)

e (∆J−1(ψ(x); h))

∣∣∣∣∣
2

=
∑
|hJ |<X

∑
x∈IJ (h)

e (∆1 (∆J−1(ψ(x); h);hJ)) ,

where

IJ(h, hJ) = IJ−1(h) ∩ {x ∈ [1, X] : x+ hJ ∈ IJ−1(h)}.
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We therefore conclude that

|F (ψ)|2J 6 (2X)2
J−J−1

∑
|h1|<X

· · ·
∑
|hJ |<X

∑
x∈IJ (h)

e(∆J(ψ(x); h)).

This confirms the inductive hypothesis (3.2) for j = J , and the conclusion of the lemma
follows via induction. �

If we apply Weyl differencing k − 1 times to the exponential sum

f(α) =
∑

16x6X

e(αxk),

then we obtain a bound of the shape

|f(α)|2k−1 � X2k−1−k
∑

h1,...,hk−1

|hi|<X

∑
x∈I(h)

e
(
k!αh1 . . . hk−1

(
x+ 1

2
(h1 + . . .+ hk−1)

))
.

This gives us an exponential sum amenable to Lemma 3.1, but we will need to average
over the products h1 . . . hk−1. This entails a discussion of the r-fold divisor function

τr(n) =
∑
di∈N

d1...dr=n

1

in the case r = k − 1.

Lemma 3.3. For each r ∈ N and ε > 0, one has τr(n)�r,ε n
ε.

Proof. We note that by considering the prime factorisations of n and di with n = d1 . . . dr,
one obtains for each fixed ε > 0 the relation

τr(n)

nε
=
∏

p prime
ph‖n

τr(p
h)

pεh
6
∏
ph‖n

(h+ 1)r−1

pεh
.

In the last inequality, we have made use of an upper bound for the number of ways of
writing h in the shape h = a1 + . . .+ ar with 0 6 ai 6 h, this being connected to τr(p

h)
via the implicit relation pa1 . . . par = ph. Plainly, one can make use of a sharper bound
here, but the crude bound that we have chosen to employ is sufficient for our purposes.
For on noting the trivial inequality h+ 1 6 2h, one sees that

(h+ 1)r−1p−εh 6 (2r/pε)h,

a quantity that is at most 1 for p > 2r/ε. Meanwhile, the function (h + 1)r−1/pεh is
bounded above, uniformly in p, purely in terms of r and ε as h increases. Thus, one has

(h+ 1)r−1p−εh 6 (h+ 1)r−12−εh < C(r, ε),

say. We consequently obtain the bound

τr(n)

nε
6
∏

p<2r/ε

C(r, ε) < C(r, ε)2
r/ε �r,ε 1.

Then τr(n)�r,ε n
ε, and the proof of the lemma is complete. �

Our final prerequisite from classical elementary number theory is Dirichlet’s theorem
on Diophantine approximation.
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Lemma 3.4 (Dirichlet’s approximation theorem). Let α ∈ R, and suppose that X > 1
is a real number. Then there exist a ∈ Z and q ∈ N with (a, q) = 1 and 1 6 q 6 X such
that |α− a/q| 6 1/(qX).

Corollary 3.5. When α ∈ R \Q, there exist infinitely many rational numbers a/q with
a ∈ Z, q ∈ N and (a, q) = 1 such that |α− a/q| 6 q−2.

Proof. Apply Lemma 3.4 to see that for each X > 1 one has a ∈ Z and q ∈ N with
(a, q) = 1, 1 6 q 6 X and

|α− a/q| 6 1/(qX) 6 1/q2.

If α ∈ R \Q, then |α − a/q| > 0, so we may fix a real number Y with Y > |α − a/q|−1.
Applying Lemma 3.4 again, we see that there exist b ∈ Z, r ∈ N with (b, r) = 1,
1 6 r 6 Y and |α− b/r| 6 1/r2. Moreover,

|α− b/r| 6 1/(rY ) < |α− a/q|,
so that b/r 6= a/q. Repeating this argument yields arbitrarily many distinct approxima-
tions to α of the desired type. �

The proof of Lemma 3.4. We apply the box principle. Let N = bXc, and consider the N
real numbers αr−bαrc for 1 6 r 6 N . All of these real numbers lie in the interval [0, 1).
If any of them lie in either [0, 1/(N + 1)) or [N/(N + 1), 1), then (since N + 1 > X) we
are done with q = r/(r, b) and a = b/(r, b), in which b = bαrc or b = bαrc+1. We may
therefore suppose that all N of these real numbers lie in one of the N − 1 intervals[

j − 1

N + 1
,

j

N + 1

)
(2 6 j 6 N).

It follows that two at least lie in some common such interval, say αu−bαuc and αv−bαvc
with u < v. We then have

|α(v − u)− (bαvc − bαuc)| < 1/(N + 1) < 1/X,

and the desired conclusion follows with q = r/(r, b) and a = b/(r, b), in which r = v − u
and b = bαvc − bαuc. �

We are now equipped to derive an averaged version of Lemma 3.1. Here, we proceed
in slightly wider generality than is required for our purpose at hand.

Lemma 3.6. Suppose that X and Y are real numbers with X > 1 and Y > 1. Suppose
also that α and β are real numbers, and that there exist a ∈ Z and q ∈ N with (a, q) = 1
and |α− a/q| 6 q−2. Then one has∑

16x6X

min{Y, ‖αx+ β‖−1} � XY
(
q−1 + Y −1 +X−1 + q(XY )−1

)
log(2q).

Proof. We may suppose that α ∈ R, a ∈ Z and q ∈ N satisfy the conditions (a, q) = 1
and |α−a/q| 6 1/q2, conditions that may always be ensured by application of Dirichlet’s
theorem on Diophantine approximation. We write θ = α− a/q, so that |θ| 6 1/q2. Since
α is close to a/q, we would like to imagine that as x varies, the successive values of
‖αx + β‖ are of size roughly 1/q, 2/q, ..., in some order. However, it is possible that
some values are duplicated, and then we must also take care of values of ‖αx + β‖ very
close to 0.
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Divide up the range of summation into intervals of integers of length bq/2c + 1, and
consider a typical such interval, say

I = {Z,Z + 1, . . . , Z + bq/2c}.

For any two distinct integers n1 and n2 with n2 < n1 lying in I, we have

‖(αn1 + β)− (αn2 + β)‖ = ‖α(n1 − n2)‖ >
∥∥∥∥a(n1 − n2)

q

∥∥∥∥− |n1 − n2||θ|.

Since n1 6= n2 and |n1 − n2| 6 q/2, we have q - (n1 − n2). On recalling that (a, q) = 1,
we therefore deduce that

‖(αn1 + β)− (αn2 + β)‖ > 1

q
− q/2

q2
=

1

2q
.

We have shown that, modulo 1, the real numbers αn1 + β and αn2 + β are distinct, and
spaced apart by a distance at least (2q)−1. But then∑

n∈I

min{Y, ‖αn+ β‖−1} 6 Y +
∑

0<|r|6q/2

∣∣∣∣ r2q
∣∣∣∣−1

6 Y + 4
∑

16r6q/2

q/r

� Y + q log(2q).

Observe next that there are at most dX/(q/2)e intervals of the shape I required to
cover all of the summands x with 1 6 x 6 X. It follows that∑

16x6X

min{Y, ‖αx+ β‖−1} � (X/q + 1)(Y + q log(2q)),

and the conclusion of the lemma follows. �

We may now execute the strategy that we have carefully prepared designed to estimate
exponential sums with polynomial arguments.

Lemma 3.7 (Weyl’s inequality). Let k > 2 and α1, . . . , αk ∈ R. Suppose that a ∈ Z and
q ∈ N satisfy (a, q) = 1 and |αk − a/q| 6 q−2. Then∑

16x6X

e(α1x+ . . .+ αkx
k)� X1+ε

(
q−1 +X−1 + qX−k

)21−k
.

Proof. Write ψ(x) = α1x+ . . .+ αkx
k and

F (α) =
∑

16x6X

e(ψ(x)).

Note first that when q > Xk, the desired estimate is trivial from the bound

|F (α)| 6
∑

16x6X

1 6 X.

Thus, we may suppose without loss that q 6 Xk.
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Next, by applying the Weyl differencing lemma with j = k − 1 (see Lemma 3.2), we
obtain the bound

|F (α)|2k−1 � X2k−1−k
∑
|h1|<X

· · ·
∑

|hk−1|<X

Υ(h),

where we write
Υ(h) =

∑
x∈Ik−1(h)

e(∆k−1(ψ(x); h)),

and Ik−1(h) is a suitable interval of integers contained in [1, X]. We note that

∆k−1(ψ(x); h) = k!h1 . . . hk−1xαk + γ,

where γ = γ(α; h) is independent of x. Thus, Lemma 3.1 delivers the bound

Υ(h)� min
{
X, ‖k!h1 . . . hk−1αk‖−1

}
,

whence

|F (α)|2k−1 � X2k−1−k
∑
|h1|<X

· · ·
∑

|hk−1|<X

min
{
X, ‖k!h1 . . . hk−1αk‖−1

}
.

Accounting for the summands in which h1 . . . hk−1 = 0, we are led from here to the bound

|F (α)|2k−1 � X2k−1−k
(
Xk−1 +

∑
16n6k!Xk−1

τk(n) min
{
X, ‖nαk‖−1

})
.

Invoking Lemma 3.6 and recalling our assumption that q 6 Xk, we therefore obtain the
estimate

F (α)� X1−21−k +X1+ε
(
q−1 +X−1 +X1−k + qX−k

)21−k
,

and the conclusion of the lemma follows at once. �

We pause momentarily to reflect on the consequences of Weyl’s inequality so far as the
behaviour of the exponential sum

f(α) =
∑

16x6X

e(αxk) (3.3)

is concerned for α ∈ mδ. Given α ∈ [0, 1), it is a consequence of Dirichlet’s approximation
theorem that there exist a ∈ Z and q ∈ N with 1 6 q 6 Xk−δ, (a, q) = 1 and

|α− a/q| 6 1/(qXk−δ) 6 Xδ−k.

If q 6 Xδ, then we would have α ∈ Mδ. Thus, when α ∈ mδ, we may suppose that
Xδ < q 6 Xk−δ. We thus conclude from Weyl’s inequality that, whenever 0 < δ < 1,
one has

f(α)� X1+ε
(
X−δ +X−1 +Xk−δ/Xk

)21−k � X1−δ21−k+ε.

Provided that s > (k/δ)2k−1, we may conclude from this upper bound that∣∣∣∣∫
mδ

f(α)se(−nα) dα

∣∣∣∣ 6 ( sup
α∈mδ
|f(α)|

)s ∫
mδ

dα

�
(
X1−δ21−k+ε

)s
= o(Xs−k).

With such a value of s, it transpires that this minor arc estimate is small enough to
establish an asymptotic formula for Rs,k(n). It remains to handle the contribution of
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the major arcs, a project that requires much further analysis. However, a transference
principle permits us to obtain useful bounds for f(α) on sets of major arcs with no
additional effort.

Lemma 3.8. Let θ, X, Y , Z be positive real numbers. Suppose that Ψ : R→ C satisfies
the property that whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and |α− a/q| 6 1/q2, then

Ψ(α)� X(q−1 + Y −1 + qZ−1)θ. (3.4)

Then, whenever b ∈ Z and r ∈ N satisfy (b, r) = 1, one has

Ψ(α)� X(λ−1 + Y −1 + λZ−1)θ, (3.5)

where λ = r + Z|rα− b|.

Proof. Suppose that b ∈ Z and r ∈ N satisfy (b, r) = 1. By Dirichlet’s approximation
theorem, there exist a ∈ Z and q ∈ N with 1 6 q 6 2r, (a, q) = 1 and |qα− a| 6 (2r)−1.
Suppose in the first instance that a/q 6= b/r. Then

1

qr
6

∣∣∣∣aq − b

r

∣∣∣∣ 6 ∣∣∣∣α− a

q

∣∣∣∣+

∣∣∣∣α− b

r

∣∣∣∣ 6 ∣∣∣∣α− b

r

∣∣∣∣+
1

2qr
,

whence q−1 6 2|rα− b|. It therefore follows from (3.4) that

Ψ(α)� X
(
|rα− b|+ Y −1 + rZ−1

)θ
� X

(
Y −1 + λZ−1

)θ
,

and (3.5) follows.
If, meanwhile, one has a/q = b/r, then since (a, q) = (b, r) = 1, one has q = r

and a = b, whence |rα − b| 6 (2r)−1. Then if α = b/r, we have λ = r, and (3.5) is
again immediate from (3.4). When α 6= b/r, on the other hand, we have the bounds
0 < |α− b/r| 6 r−2. Applying Dirichlet’s approximation theorem here, we obtain a′ ∈ Z
and q′ ∈ N with 1 6 q′ 6 2|rα − b|−1, (a′, q′) = 1 and |q′α − a′| 6 1

2
|rα − b|. Now, if

a′/q′ = b/r, we again have (a′, q′) = (b, r) = 1, and so q′ = r and a′ = b. Thus

0 < |rα− b| 6 1
2
|rα− b|,

yielding a contradiction. Then a′/q′ 6= b/r, whence

1

q′r
6

∣∣∣∣a′q′ − b

r

∣∣∣∣ 6 ∣∣∣∣α− a′

q′

∣∣∣∣+

∣∣∣∣α− b

r

∣∣∣∣
6

∣∣∣∣α− b

r

∣∣∣∣+ (2q′)−1|rα− b|

6

∣∣∣∣α− b

r

∣∣∣∣+
1

2q′r
.

We therefore infer that |rα − b| > (2q′)−1, and by applying (3.4) with a and q replaced
by a′ and q′, we obtain the bound

Ψ(α)� X
(
|rα− b|+ Y −1 + (Z|rα− b|)−1

)θ
.

As an alternative bound, since |α− b/r| 6 r−2, we may apply (3.4) to give the estimate

Ψ(α)� X
(
r−1 + Y −1 + rZ−1

)θ
.
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Thus, in either case, one has

Ψ(α)� X
(
λ−1 + Y −1 + λZ−1

)θ
,

where λ = r + Z|rα− b|. This completes the proof of the lemma. �

We recall the definition of the exponential sum f(α) from (3.3).

Corollary 3.9. Suppose that α ∈ R. Then whenever a ∈ Z and q ∈ Z satisfy (a, q) = 1,
one has

f(α)� X1+ε

(
1

q +Xk|qα− a|
+X−1 +

q +Xk|qα− a|
Xk

)21−k

.

Proof. Simply combine Lemmata 3.7 and 3.8. �

Estimates of the shape presented in Corollary 3.9 provide control of the exponential
sums in question for α lying in parts of the unit interval that one might ordinarily construe
as lying on sets of major arcs. In order to illustrate such notions, we offer a mean value
estimate for an exponential sum over the entire unit interval.

Corollary 3.10. Suppose that k > 2 and s > k2k−1. Then one has∫ 1

0

|f(α)|s dα� Xs−k+ε.

Proof. Suppose that α ∈ R. By Dirichlet’s approximation theorem, there exist a ∈ Z
and q ∈ N with 1 6 q 6 Xk−1, (a, q) = 1 and |α − a/q| 6 q−1X1−k. By Corollary 3.9,
one then has

f(α)� X1+ε

(
1

q +Xk|qα− a|
+X−1 +

Xk−1 +X

Xk

)21−k

� X1−21−k+ε +
X1+ε

(q +Xk|qα− a|)21−k
.

Notice here that, when q > X, the second term on the right hand side is no larger than
the first. Thus, on making use of the trivial inequality |a + b|s � |a|s + |b|s, we deduce
that ∫ 1

0

|f(α)|s dα� (X1−21−k+ε)s + I, (3.6)

where

I =
∑

16q6X

q∑
a=1

(a,q)=1

∫ a/q+q−1X1−k

a/q−q−1X1−k

(
X1+ε

(q +Xk|qα− a|)21−k
)s

dα.

We have

I � Xs+ε
∑

16q6X

q1−k
∫ 1/2

−1/2

dβ

(1 +Xk|β|)k
� Xs−k+ε logX.

Thus, since s(1− 21−k) < s− k, the conclusion of the lemma follows from (3.6). �
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By combining the conclusion of Corollary 3.10 with Weyl’s inequality, we may conclude
thus far that when s > k2k−1 + 1, one has∣∣∣∣∫

mδ

f(α)se(−nα) dα

∣∣∣∣ 6 ( sup
α∈mδ
|f(α)|

)s−k2k−1 ∫ 1

0

|f(α)|k2k−1

dα

�
(
X1−δ21−k+ε

)s−k2k−1

Xk2k−1−k+ε = o(Xs−k).

This provides a satisfactory treatment of the contribution of the minor arcs at the cost
of k2k−1 + 1 variables. In the next section we will exploit an idea of Hua so as to reduce
the number of variables to 2k + 1.

It may be illuminating to explain that, in the context of exponential sums of the shape

fk(α) =
∑

16x6X

e(αxk),

one has a notion of complexity associated with each real argument α. To be precise, one
can define the quantity c(α) = ck(α;X) by putting

c(α) = inf{q +Xk|qα− a| : q ∈ N and a ∈ Z}
= inf

q∈N

(
q +Xk‖qα‖

)
.

Equipped with this notion, we see that the real numbers α ∈ [0, 1) having small com-
plexity c(α) define the major arcs, while α ∈ [0, 1) of large complexity define the minor
arcs. Notice that, as a consequence of Dirichlet’s approximation theorem, given a real
number α, there exists q ∈ N with 1 6 q 6 Xk/2 for which ‖qα‖ 6 X−k/2. Hence all
real numbers α satisfy the complexity constraint c(α) 6 2Xk/2. The enthusiastic reader
may verify that there is a subset of [0, 1) of asymptotically full measure (as X →∞) for
which c(α) � Xk/2−ε. Classical technology in the circle method permits useful asymp-
totic analyses of exponential sums of degree k when the arguments α have complexity no
larger than about X. More recent technology making use of Poisson summation permits
this range to be extended almost as far as c(α) 6 X2. One may infer that direct ap-
proaches are available for linear, quadratic and cubic problems, while quartic and higher
degree problems lie beyond reach of direct approaches. It is in the handling of points
α having complexity in the range X2 6 c(α) 6 2Xk/2 that the deepest problems in the
circle method currently reside.

We finish this section by noting that, for small values of k, the sharpest available
estimates of Weyl type take the shape

sup
α∈m1

|fk(α)| � X1−21−k(logX)Ak ,

where Ak is a suitable positive number. This estimate, in which Weyl’s factor of Xε is
replaced by (logX)Ak , is due to Vaughan [22, 23]. When k > 6, one has the superior
estimate

sup
α∈m1

|fk(α)| � X1−1/(k(k−1))+ε,

which is a consequence of recent progress on Vinogradov’s mean value theorem (see [3]
and [32, 33]). The latter is a topic to which we shall return later in the course.
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4. Hua’s lemma

By combining the conclusion of Corollary 3.10 with Weyl’s inequality, one finds that
when s > k2k−1 + 1, then for a suitable δ > 0, one has∫

mδ

|fk(α)|s dα� Xs−k−δ2−k .

Hardy and Littlewood [12] obtained this estimate under the slightly less stringent hy-
pothesis s > (k − 2)2k−1 + 5, and later Hua [15] reduced this bound on s to s > 2k + 1.
This latter argument involves a Diophantine interpretation of the even moments of ex-
ponential sums. Throughout this section, we take X to be a large real number and
write

f(α) =
∑

16x6X

e(αxk).

Lemma 4.1 (Hua’s lemma). Suppose that k > 2 and 1 6 j 6 k. Then one has∫ 1

0

|f(α)|2j dα� X2j−j+ε.

Proof. We proceed by induction on j. When j = 1, it follows via orthogonality that∫ 1

0

|f(α)|2 dα =

∫ 1

0

f(α)f(−α) dα = card{1 6 x, y 6 X : xk = yk} = bXc.

This confirms the claimed conclusion in the base case j = 1.
Now suppose that the desired conclusion has been established already when 1 6 j 6 J

for some integer J satisfying 1 6 J < k. We apply the Weyl differencing lemma (see
Lemma 3.2) to see that

|f(α)|2J 6 (2X)2
J−J−1

∑
|h1|<X

· · ·
∑
|hJ |<X

∑
x∈IJ (h)

e
(
α∆J(xk; h)

)
,

where IJ(h) is a suitable subinterval of [1, X]. It follows that∫ 1

0

|f(α)|2J+1

dα =

∫ 1

0

f(α)2
J−1

f(−α)2
J−1|f(α)|2J dα

6 (2X)2
J−J−1T, (4.1)

where

T =
∑
|h1|<X

. . .
∑
|hJ |<X

∑
x∈IJ (h)

∫ 1

0

f(α)2
J−1

f(−α)2
J−1

e
(
α∆J(xk; h)

)
dα.

By orthogonality, the expression T is bounded above by the number of integral solutions
of the equation

2J−1∑
i=1

(uki − vki ) = ∆J(xk; h),

with 1 6 ui, vi 6 X (1 6 i 6 2J−1), 1 6 x 6 X and |hj| < X (1 6 j 6 J). Notice here
that we have weakened the condition x ∈ IJ(h) to 1 6 x 6 X, which simplifies the expo-
sition but inflates the potential number of solutions to be counted in an inconsequential
manner.
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The solutions counted by T are of two types, and these we now address in turn. First,
there are the solutions in which

2J−1∑
i=1

(uki − vki ) = 0.

In this situation, one has ∆J(xk; h) = 0. By orthogonality, the number of choices of u
and v here is ∫ 1

0

f(α)2
J−1

f(−α)2
J−1

dα =

∫ 1

0

|f(α)|2J dα� X2J−J+ε,

by invoking the inductive hypothesis. Meanwhile, since ∆J(xk; h) = 0, we have

h1 . . . hJ

(
k!

(k − J)!
xk−J + . . .

)
= 0.

So either hj = 0 for some 1 6 j 6 J , or else x satisfies a polynomial equation determined
by h1, . . . , hJ . Then the total number of choices for x and h1, . . . , hJ is O(XJ). The
contribution of the solutions of this first type to T is consequently

� XJ ·X2J−J+ε � X2J+ε.

For the second class of solutions counted by T , one has

2J−1∑
i=1

(uki − vki ) = N,

for some non-zero integer N = N(u,v) with |N | � Xk. For each such choice of u and
v, we have

h1 . . . hJ

(
k!

(k − J)!
xk−J + . . .

)
= N,

and thus there are O(τJ+1(N)) � Xε possible choices for h1, . . . , hJ and x. The contri-
bution to T from this second class of solutions is therefore

�
∑

16ui,vi6X
16i62J−1

τJ+1(N(u,v))� Xε
∑

16ui,vi6X
16i62J−1

1� X2J+ε.

Combining these two estimates, we see that T � X2J+ε. Substituting this bound into
(4.1), we conclude that∫ 1

0

|f(α)|2J+1

dα� (2X)2
J−J−1 ·X2J+ε � X2J+1−(J+1)+ε.

This confirms the inductive hypothesis with j = J + 1, and the conclusion of the lemma
follows. �

We stress here the number theoretic nature of the proof of this lemma, for we are
making use of prime factorisations via estimates for the divisor function.

Corollary 4.2. When s > 2k + 1, one has∫
mδ

f(α)se(−nα) dα� Xs−k−δ2−k .
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Proof. By making use of Weyl’s inequality in combination with Hua’s lemma, one obtains∣∣∣∣∫
mδ

f(α)se(−nα) dα

∣∣∣∣ 6 ( sup
α∈mδ
|f(α)|

)s−2k ∫ 1

0

|f(α)|2k dα

� (X1−δ21−k+ε)s−2
k

X2k−k+ε

� Xs−k−(s−2k)δ21−k+sε.

The conclusion of the corollary follows on recalling that s > 2k + 1. �

We finish this section by noting the sharpest estimates currently available for mean
values of the exponential sum

fk(α;X) =
∑

16x6X

e(αxk).

Thus, one has ∫ 1

0

|f2(α;X)|4 dα � X2 logX,

and, when k > 3, Vaughan [22, 23] has established bounds of the shape∫
m1

|fk(α;X)|2k dα� X2k−k(logX)−Ak ,

in which Ak is a suitable positive real number depending at most on k. These bounds
have been superseded for all exponents k with k > 4 by developments in the orbit of
recent work concerning Vinogradov’s mean value theorem. Thus, the resolution of the
main conjecture in Vinogradov’s mean value theorem by Bourgain, Demeter and Guth
[3] and Wooley [31, 33] may be applied in combination with earlier work of Wooley [30]
to deliver the bound ∫ 1

0

|fk(α)|s dα� Xs−k+ε,

whenever s > s0(k), where s0(4) = 14, s0(5) < 23,..., and in general

s0(k) 6 k2 − k + 2b
√

2k + 2c − 1.

Details may be found in Wooley [33, Corollary 14.7] (a less precise result was stated by
Bourgain [2] with a sketch of the ideas involved in its proof).

5. The analysis of the major arcs

We begin by recalling our goal and overall strategy, with the progress achieved to date.
Our goal is to asymptotically evaluate the number Rs,k(n) of representations of the large
natural number n as the sum of s k-th powers of natural numbers, in the shape

xk1 + . . .+ xks = n.

This we achieve by applying Fourier analysis. By writing X = n1/k and

f(α) =
∑

16x6X

e(αxk),
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we find via orthogonality that

Rs,k(n) =

∫ 1

0

f(α)se(−nα) dα.

We divide the interval of integration according to a Hardy-Littlewood dissection with
major arcs Mδ equal to the union of the intervals

Mδ(q, a) = {α ∈ [0, 1) : |α− a/q| 6 Xδ−k},

with 0 6 a 6 q 6 Xδ and (a, q) = 1, and with minor arcs mδ = [0, 1] \Mδ. We have
not yet made a choice for the parameter δ initially introduced subject to the condition
0 < δ < 1. At this point, it makes sense to insist that the major arcs Mδ(q, a) are
disjoint. Notice that, if some real number α lies in two distinct major arcs Mδ(q1, a1)
and Mδ(q2, a2) lying in Mδ, then by the triangle inequality, one has∣∣∣∣a1q1 − a2

q2

∣∣∣∣ 6 ∣∣∣∣α− a1
q1

∣∣∣∣+

∣∣∣∣α− a2
q2

∣∣∣∣ 6 2Xδ−k.

Thus, one finds that

1

q1q2
6

∣∣∣∣a1q2 − a2q1q1q2

∣∣∣∣ 6 2Xδ−k,

whence 1 6 2q1q2X
δ−k 6 2X3δ−k. This is plainly impossible when δ < 1/3 and X is large,

as we henceforth assume. Subject to this latter condition the major arcs Mδ defined in
this way are a disjoint union of the arcs Mδ(q, a).

We have shown thus far that when s > 2k + 1, one has∫
mδ

f(α)se(−nα) dα� Xs−k−δ2−k = o(ns/k−1).

Our goal is now to establish the lower bound∫
Mδ

f(α)se(−nα) dα� ns/k−1.

By combining these major and minor arc contributions, we obtain the asymptotic relation

Rs,k(n) =

∫
Mδ

f(α)se(−nα) dα +

∫
mδ

f(α)se(−nα) dα� ns/k−1 + o(ns/k−1)→∞,

as n→∞. Thus, we will be equipped to infer that G(k) 6 2k + 1.
Our first step towards this goal is to asymptotically evaluate f(α) in the situation that

α ∈ Mδ(q, a) ⊆ Mδ. Here, we apply the mean value theorem. Write β = α − a/q, so
that |β| 6 Xδ−k. By breaking the summand into arithmetic progressions modulo q, one
discerns that ∑

16x6X

e(αxk) =

q∑
r=1

∑
(1−r)/q6y6(X−r)/q

e
(
(β + a/q)(yq + r)k

)
=

q∑
r=1

e(ark/q)
∑

(1−r)/q6y6(X−r)/q

e
(
β(yq + r)k

)
. (5.1)
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Since β is small, we can hope to approximate the inner sum here by a smooth function
with control of the accompanying error terms. By the mean value theorem, when F (z)
is a differentiable function on [a, b] with a < b, one sees that

F (a)− F (b) = (a− b)F ′(ξ),
for some ξ ∈ (a, b). Also, trivially, one has

e(F (z)) =

∫ 1/2

−1/2
e(F (z)) dη.

Hence ∣∣∣∣e(F (z))−
∫ 1/2

−1/2
e(F (z + η)) dη

∣∣∣∣ 6 sup
|η|61/2

|e(F (z + η))− e(F (z))|

� sup
|η|61/2

|F ′(z + η)|.

Using this approximation, we may infer that∑
(1−r)/q6y6(X−r)/q

e(β(yq + r)k)−
∫ (X−r)/q

−r/q
e(β(zq + r)k) dz

� 1 + (X/q) sup
06z6X/q

∣∣kβq(qz + r)k−1
∣∣

� 1 +Xk|β|.
Notice here that the error incorporated into the right hand side accounts for the initial
and final half-intervals within the integral on the left hand side.

By substituting the last relation into (5.1), we deduce that

f(α) =

q∑
r=1

e(ark/q)

(∫ (X−r)/q

−r/q
e(β(zq + r)k) dz +O(1 +Xk|β|)

)
,

so that

f(α)−
q∑
r=1

e(ark/q)

∫ (X−r)/q

−r/q
e(β(zq + r)k) dz � q +Xk|qβ|. (5.2)

By the change of variable γ = zq + r, moreover, we have∫ (X−r)/q

−r/q
e(β(zq + r)k) dz = q−1

∫ X

0

e(βγk) dγ. (5.3)

We summarise these deliberations in the form of a lemma, but first record some nota-
tion. When a ∈ Z and q ∈ N, we write

S(q, a) =

q∑
r=1

e(ark/q),

and when β ∈ R, we put

v(β) =

∫ X

0

e(βγk) dγ.

Lemma 5.1. Suppose that α ∈ R, a ∈ Z and q ∈ N. Then one has

f(α)− q−1S(q, a)v(α− a/q)� q +Xk|qα− a|.
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Proof. The desired conclusion follows by substituting (5.3) into (5.2). �

Corollary 5.2. When α ∈Mδ(q, a) ⊆Mδ, one has

f(α)− q−1S(q, a)v(α− a/q)� X2δ.

Proof. When α ∈Mδ(q, a) ⊆Mδ, one has

|qα− a| = q|α− a/q| 6 Xδ ·Xδ−k,

whence q +Xk|qα− a| � X2δ. The claimed bound now follows from Lemma 5.1. �

Notice that when δ < 1/2, the estimate supplied by this corollary is already non-trivial.
If, moreover, we take δ to be small, say δ = 1/100, then this asymptotic relation for f(α)
is extremely precise.

Let us now substitute the conclusion of Corollary 5.2 into the formula for the major
arc contribution. We see that since

Mδ =
⋃

06a6q6Xδ

(a,q)=1

Mδ(q, a),

then ∫
Mδ

f(α)se(−nα) dα =
∑

16q6Xδ

q∑
a=1

(a,q)=1

∫ Xδ−k

−Xδ−k
f(β + a/q)se(−n(β + a/q)) dβ.

Focusing our attention on a real number α lying in Mδ(q, a) ⊆Mδ, we put

f ∗(α) = q−1S(q, a)v(α− a/q),
and write E(α) = f(α)− f ∗(α). It follows from Corollary 5.2 that E(α)� X2δ. Since

f(α)s − f ∗(α)s = (f(α)− f ∗(α))(f(α)s−1 + . . .+ f ∗(α)s−1)

� Xs−1|E(α)| � Xs−1+2δ,

we obtain the asymptotic relation∫
Mδ

f(α)se(−nα) dα =
∑

16q6Xδ

q∑
a=1

(a,q)=1

∫ Xδ−k

−Xδ−k

(
q−1S(q, a)v(β)

)s
e(−n(β + a/q)) dβ

+
∑

16q6Xδ

q∑
a=1

(a,q)=1

∫ Xδ−k

−Xδ−k
Xs−1+2δ dα. (5.4)

The second term on the right hand side of (5.4) is

� Xs−1+2δ
∑

16q6Xδ

q ·Xδ−k � Xs−k−1+3δ ·X2δ � Xs−k+(5δ−1). (5.5)

This is o(Xs−k) whenever δ < 1/5. Turning to the first term on the right hand side of
(5.4), we find that it factorises in the shape∑

16q6Xδ

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−na/q)

∫ Xδ−k

−Xδ−k
v(β)se(−βn) dβ. (5.6)



ANALYTIC NUMBER THEORY: THE CIRCLE METHOD 23

We thus obtain an asymptotic formula which we presently record in the form of a lemma.
The introduction of additional notation eases our passage at this point. When Q is a

positive real number, we define the truncated singular series

Ss,k(n;Q) =
∑

16q6Q

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−na/q)

and the truncated singular integral

Js,k(n;Q) =

∫ QX−k

−QX−k
v(β)se(−βn) dβ.

Lemma 5.3. When 0 < δ < 1, one has∫
Mδ

f(α)se(−nα) dα = Js,k(n;Xδ)Ss,k(n;Xδ) +O(Xs−k+(5δ−1)).

Proof. The desired conclusion follows on substituting (5.5) and (5.6) into (5.4). �

Corollary 5.4. When s > 2k + 1 and 0 < δ < 1/5, one has

Rs,k(n) = Js,k(n;Xδ)Ss,k(n;Xδ) + o(Xs−k),

in which X = n1/k.

Proof. Since [0, 1) is the disjoint union of mδ and Mδ, one has

Rs,k(n) =

∫
Mδ

f(α)se(−nα) dα +

∫
mδ

f(α)se(−nα) dα,

and the conclusion follows from Corollary 4.2 and Lemma 5.3. �

Our objective is now to analyse the truncated singular series and singular integral,
with the goal of showing that Ss,k(n;Xδ)� 1 and Js,k(n;Xδ)� Xs−k, provided at least
that s is large enough in terms of k.

6. The singular integral

We first consider the truncated singular integral Js,k(n;Q), our first step being to
complete this integral to obtain the (complete) singular integral

Js,k(n) =

∫ ∞
−∞

v(β)se(−nβ) dβ.

Here, we must consider the tails of the domain of integration.

Lemma 6.1. Whenever β ∈ R, one has

v(β)� X(1 +Xk|β|)−1/k.

Proof. Recall that

v(β) =

∫ X

0

e(βγk) dγ.
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The estimate |v(β)| 6 X is trivial. Also, since |v(β)| = |v(−β)|, we may assume hence-
forth that β > X−k. Next, making the change of variable u = βγk, we find that when
β > 0, one has

v(β) = k−1β−1/k
∫ βXk

0

u−1+1/ke(u) du,

whence

|v(β)| 6 k−1β−1/k
∣∣∣∣∫ βXk

0

u−1+1/ke(u) du

∣∣∣∣. (6.1)

Notice that u−1+1/k decreases monotonically to 0 as u → ∞. Then it follows from
Dirichlet’s test for convergence of an infinite integral that the integral on the right hand
side of (6.1) is uniformly bounded, and indeed∣∣∣∣∫ βXk

0

u−1+1/ke(u) du

∣∣∣∣ 6 sup
Y >0

∣∣∣∣∫ Y

0

u−1+1/ke(u) du

∣∣∣∣ <∞.
Note here that, when 0 < Y < 1, we are also making use of the inequality∣∣∣∣∫ Y

0

u−1+1/ke(u) du

∣∣∣∣ 6 ∫ Y

0

u−1+1/k du� 1.

Hence we deduce that when |β| > X−k, one has

v(β)� |β|−1/k � X(1 +Xk|β|)−1/k.
The desired conclusion follows on combining this estimate with our earlier bound |v(β)| 6
X, applied in circumstances wherein |β| 6 X−k. �

Corollary 6.2. Suppose that s > k + 1. Then the singular series Js,k(n) converges
absolutely, and moreover,

Js,k(n;Q)− Js,k(n)� Xs−kQ−1/k.

Proof. By applying Lemma 6.1, one sees that

Js,k(n)�
∫ ∞
−∞

Xs

(1 +Xk|β|)s/k
dβ � Xs

∫ ∞
0

dβ

(1 +Xkβ)1+1/k
� Xs−k.

Thus, the integral defining Js,k(n) is indeed absolutely convergent, and the singular in-
tegral exists. Moreover, and similarly,

Js,k(n;Q)− Js,k(n)�
∫ ∞
QX−k

Xs

(1 +Xkβ)1+1/k
� Xs−kQ−1/k.

This completes the proof of the lemma. �

The evaluation of the singular integral Js,k(n) is an exercise in classical Fourier analysis.

Lemma 6.3. When s > k + 1, one has

Js,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1,

in which Γ(z) denotes the familiar Γ-function defined by

Γ(z) =

∫ ∞
0

tz−1e−t dt (Re(z) > 0).
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Proof. We begin by observing that

Js,k(n) = lim
B→∞

∫ B

−B
v(β)se(−βn) dβ

= lim
B→∞

∫ B

−B

∫
[0,X]s

e(β(γk1 + . . .+ γks − n)) dγ dβ

= lim
B→∞

∫
[0,X]s

∫ B

−B
e(β(γk1 + . . .+ γks − n)) dβ dγ.

We make use of the observation that when φ 6= 0, one has∫ B

−B
e(βφ) dβ =

sin(2πBφ)

πφ
.

Adopting the convention that when φ = 0, we are to interpret the right hand side of this
formula to be 2B, we obtain the relation

Js,k(n) = lim
B→∞

∫
[0,X]s

sin(2πB(γk1 + . . .+ γks − n))

π(γk1 + . . .+ γks − n)
dγ.

We aim to transform this into a linear problem. To this end, we substitute ui = γki
(1 6 i 6 s), and recall that n = Xk. Thus, we obtain

Js,k(n) = k−s lim
B→∞

I(B),

where we write

I(B) =

∫
[0,n]s

sin(2πB(u1 + . . .+ us − n))

π(u1 + . . .+ us − n)
(u1 . . . us)

−1+1/k du.

A further substitution reduces our task to one of evaluating an integral in just one
variable. We put v = u1 + . . . + us and make the change of variable (u1, . . . , us) 7→
(u1, . . . , us−1, v), obtaining the relation

I(B) =

∫ sn

0

Ψ(v)
sin(2πB(v − n))

π(v − n)
dv,

in which

Ψ(v) =

∫
B(v)

(u1 . . . us−1)
−1+1/k(v − u1 − . . .− us−1)−1+1/k du1 . . . dus−1,

and

B(v) =
{

(u1, . . . , us−1) ∈ [0, n]s−1 : 0 6 v − u1 − . . .− us−1 6 n
}
.

Notice that the condition on u1, . . . , us−1 in the definition of B(v) may be rephrased as
v − n 6 u1 + . . . + us−1 6 v. Since Ψ(v) is a function of bounded variation, it follows
from Fourier’s Integral Theorem that since n ∈ (0, sn), one has

lim
B→∞

I(B) = Ψ(n) =

∫
B(n)

(u1 . . . us−1)
−1+1/k(n− u1 − . . .− us−1)−1+1/k du.

Note that

B(n) = {(u1, . . . , us−1) ∈ [0, n]s−1 : 0 6 u1 + . . .+ us−1 6 n}.
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Thus

Js,k(n) = k−sΨ(n) = k−s
∫ n

0

. . .

∫ n

0
u1+...+us−16n

(u1 . . . us−1)
−1+1/k(n− u1 − . . .− us−1)−1+1/k du.

We now apply induction to show that

Js,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1.

First, when s = 2, we have

J2,k(n) = k−2
∫ n

0

u
−1+1/k
1 (n− u1)−1+1/k du1

= k−2n−1+2/k

∫ 1

0

v−1+1/k(1− v)−1+1/k dv.

Thus, on recalling the classical Beta function, we obtain the formula

J2,k(n) = k−2n−1+2/kB(1/k, 1/k) = k−2n−1+2/kΓ(1/k)2

Γ(2/k)
=

Γ(1 + 1/k)2

Γ(2/k)
n−1+2/k.

Thus, the inductive hypothesis holds for s = 2.
Suppose now that the inductive hypothesis holds for s = t. Then we have

Jt+1,k(n) = k−1
∫ n

0

u
−1+1/k
t Jt,k(n− ut) dut

= k−1
Γ(1 + 1/k)t

Γ(t/k)

∫ n

0

u
−1+1/k
t (n− ut)−1+t/k dut.

Recalling once again the classical Beta function, we see that

Jt+1,k(n) = k−1
Γ(1 + 1/k)t

Γ(t/k)
n−1+(t+1)/kB(1/k, t/k)

= k−1
Γ(1 + 1/k)t

Γ(t/k)
n−1+(t+1)/kΓ(1/k)Γ(t/k)

Γ((t+ 1)/k)

=
Γ(1 + 1/k)t+1

Γ((t+ 1)/k)
n−1+(t+1)/k.

This confirms the inductive hypothesis with t replaced by t+1. We have therefore shown
that whenever s > k + 1, one has

Js,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1.

�

Corollary 6.4. Suppose that s > k + 1. Then one has

Js,k(n;Q) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 +O(ns/k−1Q−1/k),

as Q→∞.

Proof. Substitute the conclusion of Lemma 6.3 into Corollary 6.2, and recall that X =
n1/k. �
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7. The singular series, I: convergence of sums and products

We next consider the truncated singular series Ss,k(n;Q). Our first step is to complete
this series to obtain the (complete) singular series

Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))se(−na/q).

Again, we must consider the tail of the infinite sum.

Lemma 7.1. Whenever a ∈ Z and q ∈ N satisfy (a, q) = 1, one has S(q, a)� q1−2
1−k+ε.

Proof. We apply Weyl’s inequality (Lemma 3.7) with αk = a/q and X = q to obtain

q∑
r=1

e(ark/q)� q1+ε
(
q−1 + q−1 + q1−k

)21−k
.

�

This was a cheap estimate. Later on we shall obtain the estimate S(q, a) � q1−1/k,
and indeed even sharper estimates are available if one exploits the prime factorisation of
q more carefully.

By applying Lemma 7.1 to estimate the tail of the truncated singular series, we see
that ∑

q>Q

q∑
a=1

(a,q)=1

∣∣(q−1S(q, a))se(−na/q)
∣∣�∑

q>Q

φ(q)
(
qε−2

1−k
)s
.

Thus, when s > 2k + 1, we deduce that∑
q>Q

q∑
a=1

(a,q)=1

∣∣(q−1S(q, a))se(−na/q)
∣∣�∑

q>Q

qε−1−2
1−k � Q−2

−k
.

It follows that the infinite series Ss,k(n) converges absolutely under these conditions, and
moreover that

Ss,k(n)−Ss,k(n;Q)� Q−2
−k
.

Notice that this estimate is uniform in n. We summarise these conclusions in the form
of a lemma.

Lemma 7.2. Suppose that s > 2k + 1. Then Ss,k(n) converges absolutely, and

Ss,k(n)−Ss,k(n;Q)� Q−2
−k
,

uniformly in n.

We shall see shortly that there is a close connection between the singular series Ss,k(n)
and the number of solutions of the congruence

xk1 + . . .+ xks ≡ n (mod q),

as q varies. This suggests a multiplicative theme.
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Lemma 7.3. Suppose that (a, q) = (b, r) = (q, r) = 1. Then one has the quasi-
multiplicative relation

S(qr, ar + bq) = S(q, a)S(r, b).

Proof. Each residue m modulo qr with 1 6 m 6 qr is in bijective correspondence with
a pair (t, u) with 1 6 t 6 q and 1 6 u 6 r, with m ≡ tr + uq (mod qr). Indeed, if
we write q for any integer congruent to the multiplicative inverse of q modulo r, and
r for any integer congruent to the multiplicative inverse of r modulo q, then we have
m ≡ (mr)r + (mq)q (mod qr), and this claimed bijection becomes transparent. This is,
of course, an application of the Chinese Remainder Theorem. Thus, we see that

S(qr, ar + bq) =

qr∑
m=1

e

(
ar + bq

qr
mk

)

=

q∑
t=1

r∑
u=1

e

(
(ar + bq)(tr + uq)k

qr

)

=

q∑
t=1

r∑
u=1

e

(
a

q
(tr)k +

b

r
(uq)k

)
.

By the change of variable tr 7→ t′ (mod q) and uq 7→ u′ (mod r), bijective owing to the
coprimality of q and r, we obtain the relation

S(qr, ar + bq) =

(
q∑

v=1

e(avk/q)

)(
r∑

w=1

e(bwk/r)

)
= S(q, a)S(r, b).

This completes the proof of the lemma. �

Now define the quantity

A(q, n) =

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−na/q).

Lemma 7.4. The quantity A(q, n) is a multiplicative function of q.

Proof. Suppose that (q, r) = 1. Then by the Chinese Remainder Theorem, there is a
bijection between the residue classes a modulo qr with (a, qr) = 1, and the ordered pairs
(b, c) with b modulo q and c modulo r satisfying (b, q) = (c, r) = 1, via the relation
a ≡ br + cq (mod qr). Thus, we obtain

A(qr, n) =

qr∑
a=1

(a,qr)=1

(
(qr)−1S(qr, a)

)s
e(−na/qr)

=

q∑
b=1

(b,q)=1

r∑
c=1

(c,r)=1

(
(qr)−1S(qr, br + cq)

)s
e

(
−br + cq

qr
n

)
.
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By applying Lemma 7.3, we infer that

A(qr, n) =

q∑
b=1

(b,q)=1

r∑
c=1

(c,r)=1

(
q−1S(q, b)

)s (
r−1S(r, c)

)s
e(−bn/q)e(−cn/r)

= A(q, n)A(r, n).

Since A(1, n) = 1, this confirms the multiplicative property for A(q, n) and completes
the proof of the lemma. �

Observe that

Ss,k(n) =
∞∑
q=1

A(q, n).

The multiplicativity of A(q, n) therefore suggests that Ss,k(n) should factor as a product
over prime numbers p of the p-adic densities

σ(p) =
∞∑
h=0

A(ph, n).

Theorem 7.5. Suppose that s > 2k + 1. Then the following hold:

(i) the series σ(p) converges absolutely, and one has

|σ(p)− 1| � p−1−2
−k

;

(ii) the infinite product ∏
p prime

σ(p)

converges absolutely;
(iii) one has Ss,k(n) =

∏
p σ(p);

(iv) there exists a natural number C = C(k) with the property that

1/2 <
∏

p>C(k)

σ(p) < 3/2.

Proof. We begin by establishing (i). We recall from Lemma 7.1 that whenever (a, p) = 1,
one has

S(ph, a)� (ph)1−2
1−k+ε.

Then, whenever s > 2k + 1, one finds that

A(ph, n) =

ph∑
a=1

(a,p)=1

(
p−hS(ph, a)

)s
e(−na/ph)� ph(1−s2

1−k)+ε � p−h(1+2−k).

Hence

σ(p)− 1 =
∞∑
h=1

A(ph, n)�
∞∑
h=1

p−h(1+2−k) � p−1−2
−k
.

Thus σ(p) converges absolutely, and one has |σ(p)− 1| � p−1−2
−k

.
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We next turn to the proof of (ii). We begin by noting that from the conclusion of part

(i), there is a positive number B = B(k) with the property that |σ(p)− 1| 6 Bp−1−2
−k

.
Hence, whenever p is sufficiently large in terms of p, one sees that

log(1 + |σ(p)− 1|) 6 log(1 +Bp−1−2
−k

) 6 Bp−1−2
−k−1

,

whence ∑
p prime

log(1 + |σ(p)− 1|)� B
∑
p

p−1−2
−k−1 � 1.

Thus we deduce that the infinite product
∏

p σ(p) converges absolutely.

The proof of (iii) employs the multiplicative property of A(q, n) established in Lemma
7.4. One finds that

Ss,k(n) =
∞∑
q=1

A(q, n) =
∞∑
q=1

∏
ph‖q

A(ph, n).

Then since
∏

p σ(p) converges absolutely as a product, and
∑∞

q=1A(q, n) converges ab-
solutely as a sum, we may rearrange summands to deduce that

Ss,k(n) =
∏
p

∞∑
h=0

A(ph, n) =
∏
p

σ(p).

Finally, we establish (iv). We begin by observing that from part (i), it follows that
whenever p is sufficiently large in terms of k, one has

1− p−1−2−k 6 σ(p) 6 1 + p−1−2
−k
.

Hence, provided that C = C(k) is sufficiently large, one finds that∣∣∣∣∣ ∏
p>C(k)

σ(p)− 1

∣∣∣∣∣ 6 ∑
n>C(k)

n−1−2
−k � C(k)−2

−k
.

Then, again if C(k) is chosen sufficiently large in terms of k, we may infer that∣∣∣∣∣ ∏
p>C(k)

σ(p)− 1

∣∣∣∣∣ < 1/2,

and we conclude that
1/2 <

∏
p>C(k)

σ(p) < 3/2.

The final conclusion of the theorem therefore follows, and the proof of the theorem is
complete. �

8. Local solubility and p-adic densities

We would like to show that Ss,k(n) � 1 (uniformly in n). At this stage, we can at
least show that the latter is the case provided that σ(p) > 0 for p 6 C(k) with sufficient
uniformity in n. We establish this conclusion by relating σ(p) to the density of solutions
of a congruence associated to the original problem of Waring-type.

When q ∈ N, we put

Mn(q) = card{m ∈ (Z/qZ)s : mk
1 + . . .+mk

s = n}.
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Lemma 8.1. For each natural number q, one has∑
d|q

A(d, n) = q1−sMn(q).

Proof. We make use of the orthogonality relation

q−1
q∑
r=1

e(hr/q) =

{
1, when q|h,

0, when q - h.

Then

Mn(q) = q−1
q∑
r=1

(
q∑

m1=1

· · ·
q∑

ms=1

e
(
r(mk

1 + . . .+mk
s − n)/q

))
.

Classifying the values of r according to their common factors q/d with q, we obtain the
relation

Mn(q) = q−1
∑
d|q

d∑
a=1

(a,d)=1

(q/d)s
d∑

m1=1

· · ·
d∑

ms=1

e
(
a(mk

1 + . . .+mk
s − n)/d

)

= q−1
∑
d|q

qs
d∑
a=1

(a,d)=1

(
d−1S(d, a)

)s
e(−na/d)

= qs−1
∑
d|q

A(d, n).

Hence ∑
d|q

A(d, n) = q1−sMn(q),

and the proof of the lemma is complete. �

Corollary 8.2. For each prime number p, one has

σ(p) = lim
h→∞

ph(1−s)Mn(ph).

Proof. Take q = ph in Lemma 8.1 to obtain the relation

h∑
l=0

A(pl, n) = (ph)1−sMn(ph).

On taking the limit as h→∞, the left hand side converges (absolutely) to σ(p). �

We now seek to show that for the small primes p with p < C(k), and for all large
enough values of h, one has Mn(ph) � ph(s−1). From this we will deduce that σ(p) > 0,
and the desired conclusion Ss,k(n)� 1 follows from Theorem 7.5(iv).

We begin by recalling some elementary number theory. We define τ = τ(p, k) via the
relation pτ‖k, and then define γ = γ(p, k) by means of the relation

γ =

{
τ + 1, when p > 2, or when p = 2 and τ = 0,

τ + 2, when p = 2 and τ > 0.
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The following lemma describes the structure of k-th powers in Z/phZ for each prime
number p. In a sense, this result is a surrogate for Hensel’s lemma.

Lemma 8.3. Suppose that p is a prime number, and that (a, p) = 1. Suppose also
that the congruence xk ≡ a (mod pγ) is soluble. Then whenever h > γ, the congruence
xk ≡ a (mod ph) also possesses a solution.

Proof. Suppose that xk ≡ a (mod pγ) is soluble and (a, p) = 1. We suppose first that p is
an odd prime. Then there is a primitive root g modulo p2. It follows that g is a primitive
root modulo pr for all natural numbers r. Let h be an integer with h > γ, and let u be
the integer with 1 6 u 6 φ(ph) for which gu ≡ a (mod ph). Then gu ≡ a (mod pγ), and
so we deduce from the relation xk ≡ a (mod pγ) that

(gu)φ(p
γ)/(k,φ(pγ)) ≡ aφ(p

γ)/(k,φ(pγ)) ≡ (xφ(p
γ))k/(k,φ(p

γ)) ≡ 1 (mod pγ).

Hence, since g has order φ(pγ) modulo pγ, it follows that (k, φ(pγ)) divides u. Notice
that the definition of τ and γ ensures that

(k, φ(pγ)) = (k, pτ (p− 1)) = (k, φ(ph)).

Thus (k, φ(ph)) divides u. We put l = k/(k, φ(ph)). Then (l, φ(ph)) = 1, so there exists
an integer m with lm ≡ 1 (mod φ(ph)). Putting r = u/(k, φ(ph)), we deduce that

a ≡ gu = (gr)(k,φ(p
h)) ≡ (grm)l(k,φ(p

h)) ≡ (grm)k (mod ph).

We therefore conclude that the congruence yk ≡ a (mod ph) has the solution y = grm.
When p = 2 and τ = 0, one has (k, φ(2h)) = (k, 2h−1) = 1 for every exponent h,

and in such circumstances the solubility of the congruence xk ≡ a (mod 2h) is equivalent
to the solubility of a linear congruence. Indeed, there exists an integer r with rk ≡
1 (mod φ(2h)), whence

x ≡ (xk)r ≡ ar (mod 2h).

Finally, suppose that p = 2 and τ > 0. In this situation, there are integers u and v
with v ∈ {0, 1} and 1 6 u 6 2h−2 for which

a ≡ (−1)v5u (mod 2h).

We note that 5 has order 2r−2 modulo 2r for r > 2. Then we may proceed as in the
case that p is odd. We suppose that a ≡ xk (mod 2γ). Hence (−1)v5u ≡ xk (mod 2γ).
We may find integers w and z with x ≡ (−1)w5z (mod 2γ). Since 2τ |k, it follows that
xk ≡ (5z)k ≡ 1 (mod 2γ), and thus (−1)v5u ≡ 1 (mod 2γ). We deduce that v = 0 and
2γ−2|u, say u = 2τr for some integer r. Writing k = l2τ , we have 2 - l, and hence there
exists an integer m with lm ≡ 1 (mod φ(2h)). We may thus conclude that

a ≡ (−1)v5u = (5r)2
τ ≡ (5rm)l2

τ

= (5rm)k (mod 2h).

Thus, the congruence yk ≡ a (mod 2h) has the solution y = 5rm. This completes the
proof of the lemma in the final case. �

Now denote by M∗
n(q) the number of solutions of the congruence

xk1 + . . .+ xks ≡ n (mod q),

with (x1, q) = 1 and 1 6 xi 6 q (1 6 i 6 s).
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Lemma 8.4. Suppose that M∗
n(pγ) > 1. Then whenever h > γ, one has

Mn(ph) > (ph−γ)s−1.

Proof. Suppose, as we may, that y1, . . . , ys are integers with 1 6 yi 6 pγ (1 6 i 6 s) and
(y1, p) = 1 such that

yk1 + . . .+ yks ≡ n (mod pγ).

Let xi be any integer with 1 6 xi 6 ph and xi ≡ yi (mod pγ), for 2 6 i 6 s. There are
(ph−γ)s−1 possible such choices for x2, . . . , xs. We have

n− xk2 − . . .− xks ≡ n− yk2 − . . .− yks ≡ yk1 (mod pγ).

The left hand side of this congruence is a k-th power modulo pγ, and hence also a k-th
power modulo ph (as a consequence of Lemma 8.3). Thus, there is an integer x1 with
1 6 x1 6 ph such that

n− xk2 − . . .− xks ≡ xk1 (mod ph).

In particular, we may conclude that Mn(ph) > (ph−γ)s−1. �

This lemma reduces the problem of showing that Ss,k(n)� 1 to a problem concerning
the solubility of congruences modulo pγ, for finitely many prime numbers p. In order to
address this task, we begin with an auxiliary lemma of combinatorial flavor. This is a
lemma that is periodically “rediscovered”, and is often attributed to Cauchy (1813) and
Davenport (1935) (see [6] and [7]). In this context, when A and B are sets of integers,
we write

A+ B = {a+ b (mod q) : a ∈ A, b ∈ B}.

Lemma 8.5. Suppose that A is a set of r residue classes modulo q, and that B is a set
of s such classes. Suppose further that 0 ∈ B, and that whenever b ∈ B and q - b, one
has (b, q) = 1. Then

card(A+ B) > min{q, r + s− 1}.

Proof. When r + s − 1 > q, then we may delete s − (q − r + 1) elements from B \ {0}
to obtain a new set B∗1. The set B1 = B∗1 ∪ {0} is a subset of B having s1 = q − r + 1
elements, but now with r + s1 − 1 6 q. So the general case will follow from that subject
to the hypothesis r + s − 1 6 q. We may assume, moreover, that r < q, for if r = q we
have A+ B = {0, 1, . . . , q − 1}, and we are done.

We proceed by induction on s, starting with the trivial case s = 1 in which A + B =
A + {0} = A. Since in this case we have card(A + B) = r = r + s − 1, the inductive
hypothesis holds when s = 1. We may therefore suppose that s > 1, and that the desired
conclusion holds whenever card(B) < s. Suppose in the first instance that for every
a ∈ A and b ∈ B, one has a+ b ∈ A. Then for all b ∈ B one has∑

a∈A

(a+ b) ≡
∑
a∈A

a (mod q),

whence rb ≡ 0 (mod q). But r < q, and so (b, q) > 1 for all b ∈ B. This contradicts the
hypotheses of the statement of the lemma, and thus we conclude that there exists c ∈ A
and b ∈ B for which c+ b 6∈ A.

We define

C = {b ∈ B : c+ b 6∈ A}, A1 = A ∪ {{c}+ C} and B1 = B \ C.
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Notice here that c+ 0 ∈ A, and so C ( B. Then 1 6 card(B1) < s, and

card(A1) + card(B1) = (card(A) + card(C)) + (card(B)− card(C)) = r + s.

By the inductive hypothesis, one has

card(A1 + B1) > min{q, r + s− 1}.
Also,

A1 + B1 = (A+ B1) ∪ (({c}+ C) + B1)
= (A+ B1) ∪ (({c}+ B1) + C) .

But {c}+ B1 ⊆ A and C ⊂ B, and thus A1 + B1 ⊆ A+ B. Therefore, we have

card(A+ B) > card(A1 + B1) > min{q, r + s− 1}.
This establishes the inductive hypothesis when card(B) = s, and this completes the proof
of the lemma. �

This result may be applied to sets of k-th powers modulo q, when q is a prime power.

Lemma 8.6. Suppose that s > s0(k), where

s0(k) =


2τ+2, when γ = τ + 2 and k > 2,

5, when p = k = 2,
p

p− 1
(k, pτ (p− 1)), when γ = τ + 1.

Then M∗
n(pγ) > 1.

Proof. Suppose first that γ = τ + 1. We apply Lemma 8.5 with

A = {xk (mod pγ) : 1 6 x 6 pγ and (x, p) = 1} and B = A ∪ {0}.
Thus

card(A) =
φ(pγ)

(k, φ(pγ))
and card(B) = 1 +

φ(pγ)

(k, φ(pγ))
.

Write

t =

⌈
p

p− 1
(k, pτ (p− 1))

⌉
.

Then we find by induction on t that

card (A+ (t− 1)B) > min

{
pγ,

tφ(pγ)

(k, φ(pγ))

}
= pγ.

Thus A + (t − 1)B contains all residues modulo pγ, and we are forced to conclude that
the congruence

xk1 + · · ·+ xkt ≡ n (mod pγ)

possesses a solution with (x1, p) = 1, as desired.
Suppose next that p = 2 and γ = τ + 2. Then we put t = 2τ+2 = 2γ, and solve the

congruence
xk1 + . . .+ xkt ≡ n (mod 2γ)

by putting xi = 1 for 1 6 i 6 r and xi = 0 for r < i 6 t, where r is the integer with
1 6 r 6 2γ for which one has n ≡ r (mod 2γ).
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Finally, when p = 2 and k = 2, one can solve the congruence

x21 + · · ·+ x25 ≡ n (mod 8)

with x1 = 1 and x2, . . . , x5 ∈ {0, 1, 2}, as one can verify on the back of an envelope.
In all of these cases, we see that M∗

n(pγ) > 1, and thus the proof of the lemma is
complete. �

We are now equipped to wrap up the discussion of the singular series. Lemma 8.6
shows that M∗

n(pγ) > 1 provided only that when k 6= 2 one has s > 4k, and that when
k = 2 one has s > 5. Indeed, when k is not a power of 2, then the lower bound s > 3

2
k

suffices for this conclusion. We therefore deduce from Lemma 8.4 that when s > 2k + 1,
one has

Mn(ph) > p(h−γ)(s−1).

Corollary 8.2 thence confirms that

σ(p) = lim
h→∞

ph(1−s)Mn(ph) > p−γ(s−1) > 0,

and thereby we conclude via Theorem 7.5 that for a suitable positive number C = C(k),

Ss,k(n) =
(∏
p<C

σ(p)
)(∏

p>C

σ(p)
)
> 1

2

∏
p<C

σ(p) > 0.

We summarise this discussion in the form of a corollary.

Corollary 8.7. When s > 2k + 1, one has 1�s,k Ss,k(n)�s,k 1.

Proof. One has only to combine the conclusion of the above discussion with that of
Lemma 7.2. �

9. The asymptotic formula in Waring’s problem

We have shown in Corollary 5.4 that when s > 2k + 1 and 0 < δ < 1/5, one has

Rs,k(n) = Js,k(n;Xδ)Ss,k(n;Xδ) + o(Xs−k).

Also, Corollary 6.4 shows that

Js,k(n;Xδ) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 +O(ns/k−1−δ/k

2

)

and Lemma 7.2 and Theorem 7.5 demonstrate that

Ss,k(n;Xδ) = Ss,k(n) +O(n−δ2
−k/k),

where 1� Ss,k(n)� 1. Thus we conclude that when s > 2k + 1, one has

Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1Ss,k(n) + o(ns/k−1)� ns/k−1.

Then Rs,k(n)→∞ as n→∞, whence G(k) 6 2k + 1.
One may speculate concerning the extent to which this conclusion might be improved

in terms of the number of variables required to ensure its validity. This prompts the
following conjecture.
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Conjecture 9.1. When k > 3, one has∫ 1

0

|f(α)|2s dα� Xs +X2s−k.

The validity of this conjecture would imply the anticipated asymptotic formula for
s > 2k + 1, as a consequence of which one would have

G(k) = 4k for k = 2r,

and
G(k) 6 2k + 1 when k 6= 2r.

It is expected that one should have G(k) = k+1 unless there are congruence obstructions
to the solubility of the equation xk1 + . . .+ xks = n.

It is useful to introduce some additional notation at this point. When k ∈ N, we

denote by G̃(k) the least integer t with the property that whenever s > t, then one has
the anticipated asymptotic formula

Rs,k(n) = Ss,k(n)
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 + o(ns/k−1).

We have shown that G̃(k) 6 2k+1. In the current state of knowledge, one has the bound

G̃(k) 6 2k (k > 3),

as a consequence of work of Vaughan from 1986 (see [22, 23]). For larger values of k,
this work is inferior to earlier bounds originating with the work of Vinogradov in the

mid-1930s. This work shows that G̃(k) 6 (C + o(1))k2 log k for an appropriate value of
C, with permissible choices for C having been progressively reduced over the years. Most
recently, with the proof of the main conjecture in Vinogradov’s mean value theorem (see
[3, 32, 33], one improves on this earlier work of Vaughan for all k > 4. Thus, via [30],
one obtains

G̃(4) 6 15, G̃(5) 6 23, . . . , G̃(k) 6 k2 − k + 2b
√

2k + 2c − 1.

See [2] for a sketch of how to obtain a slightly weaker bound than that provided in which
the reader must avoid a misleading hint and solve a non-trivial problem, and [33, section
14] for full details.

If one is not concerned with the asymptotic formula for Rs,k(n), but merely with the
existence statement Rs,k(n) > 1 for large n, then sharper results are available. Indeed,
we have reported on these bounds for G(k) in §1.

10. The Hasse Principle for diagonal forms, I: preliminaries

When k ∈ N, s > 2k + 1 and c1, . . . , cs are fixed non-zero integers, we consider the
diagonal form

φ(x) = c1x
k
1 + . . .+ csx

k
s ,

and the solubility of the equation φ(x) = 0. Here, since all such equations possess the
trivial solution x = 0, we shall be interested in solutions with x ∈ Zs \ {0}. Our goal,
for the purposes of this class, is to show that the methods already developed apply to
resolve questions of this type concerning this Diophantine equation φ(x) = 0.

We will suppose that the equation φ(x) = 0 has a projective solution everywhere
locally. Thus:
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(i) there exists z(∞) ∈ Rs \ {0} with the property that φ(z(∞)) = 0;
(ii) for each prime p, there exists z(p) ∈ Qs

p \ {0} with the property that φ(z(p)) = 0.

We note that condition (ii) here is equivalent to the statement that, for each prime
number p, and all natural numbers h, there exists some y ∈ Zs with

φ(y) ≡ 0 (mod ph),

subject to the additional condition that (yj, p) = 1 for some index j with 1 6 j 6 s.

Definition 10.1. We say that the Hasse Principle holds for the equation φ(x) = 0
if, whenever φ(x) = 0 has a projective solution everywhere locally, then the equation
φ(x) = 0 has a solution x ∈ Zs \ {0}.

Notice that solubility over R here is easy to characterise. This is assured when s > 2
provided either that k is odd, or else k is even and not all of the coefficients ci have
the same sign. Solubility over Qp is more subtle. We will make use of a theorem of
Davenport and Lewis from 1963 showing that solubility over Qp is assured for every
prime p provided that s > k2 + 1 (see [9]). As an alternative to this result, one could
apply the Cauchy-Davenport Lemma to establish a similar conclusion, though subject to
the condition s > 4k2.

There is continuing and active interest in more general results. Consider the homoge-
neous polynomial

F (x1, . . . , xs) =
∑

i1,...,is>0
i1+...+is=k

ci1,...,isx
i1
1 . . . x

is
s ,

with ci ∈ Z fixed, and not all 0. Then it is known that when k > 2, the equation
F (x) = 0 has a non-trivial solution over Qp whenever s > k2

k
(see [29]). For k = 2, 3

one has sharper conclusions. Thus a non-trivial solution exists when k = 2 for s > 5
(a classical result of Hasse [13]), and when k = 3 such holds for s > 10 (see Lewis [17]
and Demyanov [10]). There exist infinitely many exponents k and forms F in s variables
failing to possess non-trivial solutions, meanwhile, with s as large as

exp

(
k

(log k)(log log k) . . . (logr k)(logr+1 k)1+ε

)
,

in which ε is any positive number, and r is any fixed natural number. A conclusion of
this type was obtained more or less simultaneously by Arkhipov and Karatsuba [1], Lewis
and Montgomery [18] and Brownawell [4].

Let us return now to the topic of diagonal forms. Before embarking on our application
of the Hardy-Littlewood (circle) method, we make some preliminary simplifications. Fix
s > 2k + 1 and c1, . . . , cs ∈ Z \ {0}. Let ζ ∈ Rs \ {0} satisfy the equation φ(ζ) = 0.
By the homogeneity of φ, we may rescale so as to assume without loss of generality that
|ζi| < 1/2 for 1 6 i 6 s. We suppose also that for each prime number p and each h ∈ N,
there is a solution z = z(p,h) ∈ Zs of the congruence

c1z
k
1 + . . .+ csz

k
s ≡ 0 (mod ph),

in which p - zi for some 1 6 i 6 s.
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Our goal is to evaluate the number Nφ(X) of integral solutions x ∈ [−X,X]s ∩ Zs of
the equation φ(x) = 0, in which φ(x) = c1x

k
1 + . . .+ csx

k
s . Write

f(α) =
∑
|x|6X

e(αxk).

Then by orthogonality one has

Nφ(X) =

∫ 1

0

f(c1α) . . . f(csα) dα.

We will apply the Hardy-Littlewood method to show that Nφ(X) → ∞ as X → ∞,
whence there exists x ∈ Zs \ {0} with φ(x) = 0. The Hasse Principle follows for the
equation φ(x) = 0.

We require a Hardy-Littlewood dissection, and this entails a slight modification of that
which we have previously employed. We define

Mδ(q, a) = {α ∈ [0, 1) : |α− a/q| 6 Xδ−k},

and take Mδ to be the union of the arcs Mδ(q, a) with 0 6 a 6 q 6 Xδ and (a, q) = 1.
We will take δ to be a real number with 0 < δ < 1/5. Finally, we put mδ = [0, 1) \Mδ

for the corresponding set of minor arcs.

11. The Hasse Principle for diagonal forms, II: the minor arcs

The minor arc contribution is rapidly reduced to an estimate of the type previously
encountered. By applying Hölder’s inequality, we obtain∣∣∣∣∫

mδ

f(c1α) . . . f(csα) dα

∣∣∣∣ 6 s∏
i=1

(∫
mδ

|f(ciα)|s dα

)1/s

. (11.1)

Moreover, for each index i one finds that∫
mδ

|f(ciα)|s dα 6

(
sup
α∈mδ
|f(ciα)|

)s−2k ∫ 1

0

|f(ciα)|2k dα. (11.2)

By a change of variable, invoking periodicity modulo 1 of f(β) and Hua’s Lemma, we
discern that∫ 1

0

|f(ciα)|2k dα = |ci|−1
∫ |ci|
0

|f(β)|2k dβ =

∫ 1

0

|f(β)|2k dβ � X2k−k+ε. (11.3)

The estimation of sup
α∈mδ
|f(ciα)|, meanwhile, is achieved through Weyl’s inequality. It is

convenient at this point to write

H = max
16i6s

|ci|.

Suppose that α ∈ mδ. By Dirichlet’s approximation theorem, there exists a ∈ Z and
q ∈ N with 1 6 q 6 Xk−δ, (a, q) = 1 and |ciα− a/q| 6 Xδ−k. Put

b =
a

(ci, a)
· |ci|
ci

and r =
|ci|q

(ci, a)
,
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so that |α − b/r| 6 Xδ−k with 1 6 r 6 Hq 6 HXk−δ and (b, r) = 1. If one were to
have 1 6 r 6 Xδ, then α would lie on Mδ. Thus we may assume that r > Xδ, whence
H−1Xδ < q 6 Xk−δ. We therefore deduce from Weyl’s inequality that

f(ciα)� X1+ε
(
r−1 +X−1 + rX−k

)21−k
� X1+ε

(
HX−δ +X−1 +X−δ

)21−k
,

whence

sup
α∈mδ
|f(ciα)| �c X

1−δ21−k+ε. (11.4)

By substituting (11.3) and (11.4) into (11.2), we deduce that when s > 2k + 1,∫
mδ

|f(ciα)|s dα� (X1−δ21−k+ε)s−2
k

X2k−k+ε � Xs−k−δ2−k .

Hence, on recalling (11.1), we obtain the bound∫
mδ

f(c1α) . . . f(csα) dα� Xs−k−δ2−k . (11.5)

12. The Hasse Principle for diagonal forms, III: the major arcs

We first obtain an asymptotic formula for each exponential sum f(ciα). We have

f(α) =
∑
|x|6X

e(αxk) = 1 +
∑

16x6X

e(αxk) +
∑

16x6X

e(α(−x)k).

Thus, as a consequence of Lemma 5.1, we see that whenever α ∈ R, a ∈ Z and q ∈ N,
one has

f(α)− q−1S(q, a)v(α− a/q)� q +Xk|qα− a|,
where now we write

S(q, a) =

q∑
r=1

e(ark/q) and v(β) =

∫ X

−X
e(βγk) dγ.

Thus

f(ciα)− q−1S(q, cia)v(ci(α− a/q))� q + |ci|Xk|qα− a|.
Define the function f̃i(α) to be q−1S(q, cia)v(ci(α − a/q)) when α ∈ Mδ(q, a) ⊆ Mδ,

and otherwise take f̃i(α) = 0. Then it follows that

sup
α∈Mδ

|f(ciα)− f̃i(α)| �c X
2δ,

and hence

sup
α∈Mδ

|f(c1α) . . . f(csα)− f̃1(α) . . . f̃s(α)| � Xs−1+2δ.

We may therefore infer that∫
Mδ

f(c1α) . . . f(csα) dα−
∫
Mδ

f̃1(α) . . . f̃s(α) dα� Xs−1+2δmes(Mδ)

� Xs−k+(5δ−1) = o(Xs−k).
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On noting that ∫
Mδ

f̃1(α) . . . f̃s(α) dα = J(Xδ)S(Xδ),

where

J(Q) =

∫ QXk

−QX−k
v(c1β) . . . v(csβ) dβ

and

S(Q) =

Q∑
q=1

q∑
a=1

(a,q)=1

s∏
i=1

(
q−1S(q, cia)

)
,

we may conclude as follows.

Lemma 12.1. One has∫
Mδ

f(c1α) . . . f(csα) dα = J(Xδ)S(Xδ) + o(Xs−k).

It remains now only to complete the truncated singular integral and singular series,
and to analyse the latter quantities. One can apply Fourier’s Integral Theorem to asymp-
totically evaluate the completed singular integral

J =

∫ ∞
−∞

v(c1β) . . . v(csβ) dβ,

though we will take the opportunity momentarily to explore a route that offers an intu-
itively more concrete formulation. For now, we concentrate on the singular series. One
has

S(q, cia) =

q∑
r=1

e(ciar
k/q) = (q, ci)S

(
q

(q, ci)
,
cia

(q, ci)

)
,

in which the last two arguments are pairwise coprime. We thus deduce from Lemma 7.1
that

S(q, cia)� (q, ci)

(
q

(q, ci)

)1−21−k+ε

�c q
1−21−k+ε.

We write

S =
∞∑
q=1

q∑
a=1

(a,q)=1

s∏
i=1

(
q−1S(q, ci)

)
.

Then it follows that whenever s > 2k + 1, then

S−S(Q)�
∑
q>Q

q∑
a=1

(
qε−2

1−k
)s
� Q−2

−k
,

so that S is absolutely convergent and S−S(Xδ)� X−δ2
−k

.
Next we observe that the argument of the proof of Lemma 7.3 shows that for each

index i, whenever (a, q) = (b, r) = (q, r) = 1, one has

S(qr, ci(ar + bq)) = S(q, cia)S(r, cib).
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Write

A(q) =

q∑
a=1

(a,q)=1

s∏
i=1

(
q−1S(q, cia)

)
.

Then, just as in the proof of Lemma 7.4, one finds that A(q) is a multiplicative function
of q. Next we put

σ(p) =
∞∑
h=0

A(ph),

Then we deduce, as in the proof of Theorem 7.5, that when s > 2k + 1 the infinite sum
σ(p) converges absolutely, with

|σ(p)− 1| �c p
−1−2−k ,

that
∏

p σ(p) converges absolutely with
∏

p σ(p) = S, and that there is a natural number

C = C(s, k, c) having the property that

1/2 <
∏
p>C

σ(p) < 3/2.

Our next step is to analyse the p-adic densities σ(p) when p is small. Put

M(q) = card{m ∈ (Z/qZ)s : c1m
k
1 + . . .+ csm

k
s = 0}.

Then, just as in the proof of Lemma 8.1, we find that∑
d|q

A(d) = q1−sM(q),

whence

σ(p) = lim
h→∞

ph(1−s)M(ph).

In order to obtain a lower bound for σ(p), we employ our hypothesis concerning the
local solubility of the equation φ(x) = 0. Define κ by putting

κ = max
16i6s
{m ∈ Z : pm|ci},

and put ν = κ + γ, where γ = γ(p, k) is defined as in the preamble to Lemma 8.3. We
may suppose that there is a solution of the congruence

c1y
k
1 + . . .+ csy

k
s ≡ 0 (mod pν),

in which p - yi for some index i with 1 6 i 6 s. By relabelling variables, if necessary, we
may suppose that this index is i = 1.

Consider an integer h with h > ν, and suppose that pµ‖c1, noting that µ 6 κ. We fix
a choice of x2, . . . , xs with 1 6 xj 6 ph and xj ≡ yj (mod pν) (1 6 i 6 s). There are
(ph−ν)s−1 such choices. We then have

−c−11 (c2x
k
2 + . . .+ csx

k
s) ≡ −c−11 (c2y

k
2 + . . .+ csy

k
s ) ≡ yk1 (mod pν−µ),

and hence

−c−11 (c2x
k
2 + . . .+ csx

k
s) ≡ yk1 (mod pγ).
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Thus, since the left hand side of this last congruence is a k-th power modulo pγ, it
follows from Lemma 8.3 that the left hand side is also a k-th power modulo ph. Hence
the congruence

−(c2x
k
2 + . . .+ csx

k
s) ≡ c1x

k
1 (mod ph)

is soluble, and we may conclude that M(ph) > (ph−ν)s−1. In particular, we have

σ(p) = lim
h→∞

ph(1−s)M(ph) > p−ν(s−1),

whence σ(p) > 0 for all prime numbers p. From here we discern that

S =
(∏
p<C

σ(p)
)(∏

p>C

σ(p)
)
>

1

2

∏
p<C

σ(p)� 1,

so that in fact, subject to the local solubility hypothesis and the assumption s > 2k + 1,
one has 1� S� 1.

It remains to consider the singular integral. With this in mind, we observe initially
that for each index i,

v(ciβ) =

∫ X

0

e(ciβγ
k) dγ +

∫ X

0

e(ciβ(−γ)k) dγ

� X

(1 +Xk|ciβ|)1/k
�c

X

(1 +Xk|β|)1/k
.

Thus, defining the (complete) singular integral by means of the relation

J =

∫ ∞
−∞

v(c1β) . . . v(csβ) dβ,

we find that whenever s > k + 1, one has

J − J(Q)�
∫ ∞
QX−k

Xs

(1 +Xkβ)s/k
dβ � Xs−kQ−1/k.

In particular, the singular integral J is absolutely convergent.
A slightly more robust treatment than in our discussion of Waring’s problem is more

illuminating in general than our application there of Fourier’s Integral Theorem. We
begin by observing that, by a change of variable,

J =

∫ ∞
−∞

v(c1β) . . . v(csβ) dβ = Xs−kI,

where

I =

∫ ∞
−∞

v1(c1β) . . . v1(csβ) dβ,

in which

v1(β) =

∫ 1

−1
e(βγk) dγ.

When 0 < η 6 1, we define the auxiliary function

wη(β) = η

(
sin(πηβ)

πηβ

)2

.
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This function has Fourier transform

ŵη(γ) =

∫ ∞
−∞

wη(β)e(−βγ) dβ = max{0, 1− |γ|/η}. (12.1)

Notice here that this integral converges absolutely. One can apply the formula (12.1)
to construct a continuous approximation to the indicator function of an interval. When
0 < δ < η, we define

Wη,δ(γ) =


1, when |γ| 6 η,

1− |γ| − η
δ

, when η < |γ| < η + δ,

0, when |γ| > η + δ.

We put
W+
η (γ) = Wη,η2(γ) and W−

η (γ) = Wη−η2,η2(γ).

Then W+
η (γ) and W−

η (γ) supply upper and lower bounds for the function{
1, when |γ| 6 η,

0, when |γ| > η.

Our formula (12.1) shows that

Wη,δ(γ) = (1 + η/δ)ŵη+δ(γ)− (η/δ)ŵη(γ),

whence
W+
η (γ) = (1 + η−1)ŵη+η2(γ)− η−1ŵη(γ)

and
W−
η (γ) = η−1ŵη(γ) + (1− η−1)ŵη−η2(γ).

Write M∞(η) for the volume of the subset of [−1, 1]s defined by the inequality |φ(ξ)| < η.
Then our discussion shows that∫

[−1,1]s
W−
η (φ(ξ)) dξ 6M∞(η) 6

∫
[−1,1]s

W+
η (φ(ξ)) dξ.

We now turn our attention to the Fourier side. Define

U(η) =

∫
[−1,1]s

η−1ŵη(φ(ξ)) dξ.

Lemma 12.2. Let η be a real number with 0 < η < 1. Suppose that η1 is a real number
with |η1 − η| 6 η2. Then

U(η1) = I +O(η1/(2k)).

Proof. Put
K(β) = η−11 wη1(β).

Then by interchanging orders of integration, it follows that

U(η1) =

∫ ∞
−∞

v1(c1β) . . . v1(csβ)K(β) dβ,

whence

U(η1)− I =

∫ ∞
−∞

v1(c1β) . . . v1(csβ) (K(β)− 1) dβ. (12.2)
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We want to show that the right hand side in (12.2) is small. Put D = [−η−1/2, η−1/2]
and E = R \D. Then from the power series expansion of wη(β), we have

0 6 1−K(β)� min{1, η2β2}.

The absolute convergence of the integral I ensures that the contribution arising from
integrating over D on the right hand side of (12.2) is at most

sup
β∈D
|1−K(β)|

∫ ∞
−∞

v1(c1β) . . . v1(csβ) dβ � η.

The contribution arising from E, meanwhile, is bounded above by∫
E

(1 + |β|)−s/k dβ � (η−1/2)−1/k = η1/(2k).

Thus we infer that

U(η1)− I � η1/(2k).

This completes the proof of the lemma. �

By using the definitions of W±
η (γ), we obtain∫

[−1,1]s
W+
η (φ(ξ)) dξ =

(
(η + η2)(1 + 1/η)− η(1/η)

) (
I +O(η1/(2k))

)
=
(
2η +O(η2)

) (
I +O(η1/(2k))

)
and ∫

[−1,1]s
W−
η (φ(ξ)) dξ =

(
η(1/η) + (η − η2)(1− 1/η)

) (
I +O(η1/(2k))

)
=
(
2η +O(η2)

) (
I +O(η1/(2k))

)
.

We therefore conclude from that

(2η)−1M∞(η) = I +O(η1/(2k)),

whence

lim
η→0+

(2η)−1M∞(η) = I =

∫ ∞
−∞

v1(c1β) . . . v1(cs)β) dβ.

In particular, one has J = σ∞X
s−k, where σ∞ is the Siegel volume

σ∞ = lim
η→0+

(2η)−1M∞(η).

Notice that M∞(η) is the volume of an η-neighborhood of the hypersurface φ(ξ) = 0.
By hypothesis, the equation φ(z) = 0 has a real point z = z(∞) ∈ [−1

2
, 1
2
]s. Hence, an

application of the Implicit Function Theorem shows that there is a positive number ω with
the property that in a ω-neighborhood D of z(∞), this hypersurface is well-approximated
by a hyperplane, and thus an η-neighborhood of D has volume �ω η. In particular, one
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has σ∞ > 0, whence J � Xs−k. We therefore conclude that when s > 2k + 1, one has∫
Mδ

f(c1α) . . . f(csα) dα = S(Xδ)J(Xδ) + o(Xs−k)

= SJ + o(Xs−k)

= σ∞

(∏
p

σp

)
Xs−k + o(Xs−k).

Finally,

Nφ(X) =

∫
Mδ

f(c1α) . . . f(csα) dα +

∫
mδ

f(c1α) . . . f(csα) dα

= σ∞

(∏
p

σp

)
Xs−k + o(Xs−k),

whence Nφ(X)→∞ as X →∞. Then the equation c1x
k
1+. . .+csx

k
s = 0 has a non-trivial

integral solution.

13. Analogues of Hua’s lemma: diminishing ranges

We now turn to the task of reducing the number of variables required to successfully
apply the circle method. By incorporating the refined analysis of the major arcs avail-
able from the fourth problem set, it is apparent that only 4k variables are required to
asymptotically estimate the major arc contribution. Our goal then is to refine the minor
arc analysis in a comparable manner. With this end in mind, we restrict the variables in
an attempt to make the minor arc contribution easier to estimate, in the hope that the
major arc analysis remains under our control.

Let n be a large natural number, write X = n1/k, and consider real numbers Xi

(0 6 i 6 s) defined by putting

X0 = 1
20
X and Xi+1 = 1

2
X

1−1/k
i (i > 0).

We consider the number ρ(n) of representations of the integer n in the shape

n =
t∑
i=1

xki +
s−1∑
j=0

(ykj + zkj ),

with 1 6 xi 6 X (1 6 i 6 t) and Xj < yj, zj 6 2Xj (j > 0). If we can show that
ρ(n)→∞ as n→∞, then it follows that G(k) 6 2s+ t. We may then seek to optimise
the choices for s and t so as to minimise G(k).

Write

f(α) =
∑

16x6X

e(αxk),

gj(α) =
∑

Xj<y62Xj

e(αyk) (0 6 j 6 s− 1),

G(α) =
s−1∏
j=0

gj(α).
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Then it follows via orthogonality that

ρ(n) =

∫ 1

0

f(α)tG(α)2e(−nα) dα.

It is useful for future reference to observe that a trivial estimate yields

|G(α)| 6 G(0) = X0X1 . . . Xs−1 �
s−1∏
j=0

X(1−1/k)j = Xk(1−(1−1/k)s).

Lemma 13.1 (Diminishing ranges estimate). One has∫ 1

0

|G(α)|2 dα� Xk−k(1−1/k)s .

In order to have reasonable prospects for successfully applying the circle method, we
should seek to save a factor Xk over the trivial count for the number of choices for the
underlying variables, which suggests that we should aim for a bound G(0)2X−k in the
above lemma. The argument of the proof of the lemma in fact shows that∫ 1

0

|G(α)|2 dα � G(0)2X−k+k(1−1/k)
s

.

Since k(1 − 1/k)s 6 ke−s/k, this estimate gets exponentially close (in the exponent) to
the required bound as s grows.

Proof of Lemma 13.1. By orthogonality, one sees that the integral in question is equal to
the number of solutions of the equation

yk0 − zk0 =
s−1∑
j=1

(ykj − zkj ), (13.1)

with Xj < yj, zj 6 2Xj (0 6 j 6 s− 1). However, we have∣∣∣∣ s−1∑
j=1

(ykj − zkj )

∣∣∣∣ < (2X1)
k + o(Xk

1 ) = (1 + o(1))Xk−1
0 ,

whereas, when y0 6= z0, one has

|yk0 − zk0 | = |y0 − z0| · |yk−10 + yk−20 z0 + . . .+ zk−10 | > kXk−1
0 .

Thus, when y0 6= z0, we have

|yk0 − zk0 | >
∣∣∣∣ s−1∑
j=1

(ykj − zkj )

∣∣∣∣,
contradicting the validity of the equation (13.1). We are therefore forced to conclude
that y0 = z0, whence∫ 1

0

|G(α)|2 dα 6 X0

∫ 1

0

|g1(α) . . . gs−1(α)|2 dα.
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The mean value on the right hand side here has the same shape as that on the left hand
side, though with s − 1 pairs of generating functions in place of s. Thus, an inductive
argument confirms that∫ 1

0

|G(α)|2 dα 6 X0X1 . . . Xs−1 � Xk−k(1−1/k)s .

This completes the proof of the lemma. �

This lemma serves as a substitute for Hua’s lemma in our analysis of ρ(n), though it
is far more efficient. In order to make further progress, we require a Hardy-Littlewood
dissection of the unit interval. Here it is expedient to make use of our earlier work. Take
δ to be a positive number with δ < 1/5, and define Mδ to be the union of the intervals

Mδ(q, a) = {α ∈ [0, 1) : |α− a/q| 6 Xδ−k}
with 0 6 a 6 q 6 Xδ and (a, q) = 1. We then put mδ = [0, 1) \Mδ.

Our analysis of the minor arcs makes use of Weyl’s inequality just as in Lemma 3.7
and its sequel. Thus, we have

sup
α∈mδ
|f(α)| � X1−δ21−k+ε,

whence ∫
mδ

f(α)tG(α)2e(−nα) dα 6

(
sup
α∈mδ
|f(α)|

)t ∫ 1

0

|G(α)|2 dα

�
(
X1−δ21−k+ε

)t
Xk−k(1−1/k)s .

It follows that, for some positive number τ , one has∫
mδ

f(α)tG(α)2e(−nα) dα� G(0)2X t−k−kτ � G(0)2nt/k−1−τ ,

provided only that

tδ21−k > k(1− 1/k)s. (13.2)

We shall presently establish the major arc estimate∫
Mδ

f(α)tG(α)2e(−nα) dα� G(0)2nt/k−1,

subject to the condition that t > 4k. Since this quantity tends to∞ as n→∞, it follows
that

G(k) 6 inf
s>0

(
2s+ max

{
4k,

⌈
k(1− 1/k)s

δ21−k

⌉})
.

By varying the parameter s, one may minimise the quantity central to the right hand
side here, though this is a little messy. Observe that (1 − 1/k)s 6 e−s/k. Thus, taking
δ = 1/8 in order to simplify the associated computations, we see that

2s+

⌈
k(1− 1/k)s

δ21−k

⌉
< 2s+ d8k2k−1e−s/ke.

If we differentiate the smooth function underlying the right hand quantity here, then
the optimal choice for s is seen to be approximated by the solution of the equation



48 TREVOR D. WOOLEY

2 = 2k+2e−s/k, so that s is approximately k log(2k+1) = k(k + 1) log 2. Motivated by this
observation, we put s = dk2 log 2e and set

t =

⌈
k(1− 1/k)s

δ21−k

⌉
6 dk2k+2 · 2−ke = 4k.

Thus we see that

G(k) 6 2dk2 log 2e+ 4k < (2 log 2)k2 + 4k + 2.

Let us return to the analysis of the major arc contribution. We have∫
Mδ

f(α)tG(α)2e(−nα) dα =
∑
y,z

∫
Mδ

f(α)te(−Nα) dα,

where

N = n−
s−1∑
j=0

(ykj + zkj ),

and the summation over y, z is over Xj < yj, zj 6 2Xj (0 6 j 6 s− 1). We note that

s−1∑
j=0

(ykj + zkj ) 6 2(2X0)
k +O(Xk

1 ) < 101−kn,

whence

N = n−
s−1∑
j=0

(ykj + zkj ) > n/2.

Also, since δ < 1/5 and t > 4k, our major arc analysis (using the estimate S(q, a) �
q1−1/k+ε for (q, a) = 1 from the third problem set) shows that∫

Mδ

f(α)te(−Nα) dα =
Γ(1 + 1/k)t

Γ(t/k)
St,k(N)N t/k−1 + o(N t/k−1)� nt/k−1.

Hence ∫
Mδ

f(α)tG(α)2e(−nα) dα� nt/k−1
∑
y,z

1 = nt/k−1G(0)2.

This justifies our earlier claim.
We may summarise these deliberations as follows.

Theorem 13.2. When k > 2, one has

G(k) < (2 log 2)k2 + 4k + 2.

Although this result can be refined in various ways, that already presented represents
a significant improvement on Hua’s bound G(k) 6 2k + 1. One may check on the back
of an envelope that it improves on the latter bound for k > 7.

c©Trevor D. Wooley, Purdue University 2023. This material is copyright of Trevor D.
Wooley at Purdue University unless explicitly stated otherwise. It is provided exclusively
for educational purposes at Purdue University, and is to be downloaded or copied for your
private study only.
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