
MA59800ANT ANALYTIC NUMBER THEORY. PROBLEMS 1

TO BE HANDED IN BY TUESDAY 24TH JANUARY 2023

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. (i) Suppose that X > 0 is large, and that x1 and x2 are two natural numbers with
x21 + x22 6 X. By making the trivial observation that x22 + x21 = x21 + x22, deduce that
the number of integers n with 1 6 n 6 X that are the sum of two squares of natural
numbers is at most

1

2
b
√
Xc
(
b
√
Xc+ 1

)
.

Hence deduce that not all large integers are the sum of two squares, and thus G(2) > 3.
(ii) Prove that when k > 2, one has G(k) > k + 1.

A2. (i) Show that when a ∈ Z, then either a4 ≡ 0 (mod 16) or a4 ≡ 1 (mod 16).
(ii) Deduce that whenever n is an integer with n ≡ 15 (mod 16), then n cannot be the
sum of 14 or fewer integral fourth powers.
(iii) Deduce that when r is a non-negative integer, then 31 · 16r is not the sum of 15
integral fourth powers, and hence G(4) > 16.

B3.When α ∈ R and X > 0 is large, define the exponential sum

S(α) =
∑

16x6X

e(αx).

(i) Show that when p > 0 and p 6= 1, one has∫ 1

0

|S(α)|p dα� 1 +Xp−1.

(ii) Prove that ∫ 1

0

|S(α)| dα � log(2X).

B4. (i) Suppose that k > 2. Write

f(α) =
∑

16x6X

e(αxk),

and recall the consequence of Hua’s lemma showing that∫ 1

0

|f(α)|4 dα� X2+ε.

Prove that for each positive number s, one has∫ 1

0

|f(α)|s dα� Xs/2−ε.
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(ii) Show that when k is a positive integer and s > 0, one has∫ 1

0

|f(α)|s dα� Xs−k.

(iii) Conclude that when k > 2 and s > 0, one has∫ 1

0

|f(α)|s dα� Xs/2−ε +Xs−k.

B5. The forward difference operator ∆1 is defined for any real-valued function ψ of the
variable x via the relation

∆1(ψ(x);h) = ψ(x+ h)− ψ(x).

The j-fold forward difference operator is then defined for j > 2 inductively via the relation

∆j(ψ(x);h1, . . . , hj) = ∆1(∆j−1(ψ(x);h1, . . . , hj−1);hj).

Show that for 1 6 j 6 k, one has

∆j(x
k;h1, . . . , hj) =

∑
i0,...,ij

k!

i0! . . . ij!
xi0hi11 . . . h

ij
j ,

where the summation is over i0 > 0, i1 > 1, . . . , ij > 1 and i0+ · · ·+ ij = k. Hence deduce
that

∆j(x
k;h1, . . . , hj) = h1 . . . hjpj(x;h1, . . . , hj),

where pj is a polynomial in x of degree k − j with leading coefficient k!/(k − j)!.
C6.Write

g(α, β) =
∑

16x6X

e(αx3 + βx).

Show that whenever α ∈ R, and a ∈ Z and q ∈ N satisfy (a, q) = 1 and |α− a/q| 6 q−2,
then one has ∫ 1

0

|g(α, β)|4 dβ � X3+ε(q−1 +X−1 + qX−3).

C7.Suppose that (ad) is a sequence of unimodular complex numbers. Show that∫ 1

0

∣∣∣∣ ∑
16md26X

ade(αmd
2)

∣∣∣∣3/2 dα� X1/2+ε.

Hint: Recall question B3 and consider dividing the range of summation for the variable
d into dyadic intervals of the shape (D, 2D].
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