
MA59800ANT ANALYTIC NUMBER THEORY. PROBLEMS 3

TO BE HANDED IN BY TUESDAY 21ST FEBRUARY 2023

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

Throughout, we write

S(q, a) =

q∑
r=1

e(ark/q).

A1. Suppose that k ∈ N, and p is a prime number for which (k, p− 1)=1.
(i) By making use of primitive roots modulo p, show that {xk : x ∈ Z/pZ} = Z/pZ.
(ii) Prove that when p - a, one has S(p, a) = 0.

A2. Suppose that k ∈ N and p is a prime number with p - k.
(i) Show that

p−1∑
r1=0

p−1∑
r2=0

e

(
a(r1 + r2p)

k

p2

)
=

p−1∑
r1=0

e

(
ark1
p2

) p−1∑
r2=0

e

(
kark−11 r2

p

)
.

(ii) Deduce that whenever (a, p) = 1, one has S(p2, a) = p.

B3. Suppose that k ∈ N, that X is a large real number, and that Q is a real number
with 1 6 Q < 1

2
Xk/3. Denote by M(Q) the union of the arcs

M(q, a) = {α ∈ [0, 1) : |α− a/q| 6 QX−k},
with 0 6 a 6 q 6 Q and (a, q) = 1, and put m(Q) = [0, 1) \M(Q).
(i) Suppose that α ∈M(Q) and r ∈ N. Show that rα ∈M(rQ) (mod 1).
(ii) Suppose that rα ∈M(Q) (mod 1) with r ∈ N. Show that α ∈M(rQ).
(iii) Suppose that α ∈ m(Q) and r ∈ N. Show that rα ∈ m(Q/r) (mod 1).
(iv) Suppose that rα ∈ m(Q) (mod 1) with r ∈ N. Show that α ∈ m(Q/r).

B4. Suppose that k ∈ N and that p is a prime number with p ≡ 1 (mod k).
(i) By making use of orthogonality, show that

p−1
p∑

a=1

|S(p, a)|2 = k(p− 1) + 1.

(ii) Let g be a primitive root modulo p. Show that S(p, agkw) = S(p, a) for w ∈ Z.
(iii) Let a0 be the value of a with 1 6 a 6 p− 1 for which |S(p, a)| is largest. Prove that

p−1
(p−1)/k∑
w=1

|S(p, a0g
kw)|2 =

p− 1

kp
|S(p, a0)|2,

and hence deduce that whenever (a, p) = 1, one has |S(p, a)| 6 k
√
p. [You can challenge

yourself to refine this upper bound to |S(p, a)| 6 (k − 1)
√
p by considering the second

largest value of |S(p, a)|, and the third largest value, and so on.]
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B5. Suppose that k > 2 and that p is a prime number. Fix integers a, b and c with
p - abc, and consider the number N(a, b, c; p) of solutions of the congruence

axk + byk + czk ≡ 0 (mod p),

with 1 6 x, y, z 6 p.
(i) Show that

N(a, b, c; p) = p−1
p−1∑
u=0

S(p, au)S(p, bu)S(p, cu).

(ii) By considering separately the contributions in the latter sum arising from the term
with u = 0, and that arising from the terms u with 1 6 u 6 p− 1, show that

|N(a, b, c; p)− p2| 6 k2p3/2.

Deduce that the above congruence has a solution (x, y, z) 6= (0, 0, 0) whenever p > k4.

C6. Suppose that k ∈ N. When q is a natural number, write

S∗(q, a) =

q∑
r=1

(r,q)=1

e(ark/q).

By adapting the ideas of problem B4, show that when p is a prime and h ∈ N, then

p−h
ph∑
a=1

|S∗(ph, a)|2 6 2kϕ(ph),

where ϕ(·) is Euler’s function. Hence deduce that S(q, a)� q1−1/k+ε when (a, q) = 1.

C7. Define

Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−na/q).

Prove that when n 6= 0, the singular series Ss,k(n) converges absolutely for s > 3
2
k + 1.
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