
MA59800ANT ANALYTIC NUMBER THEORY. PROBLEMS 4

TO BE HANDED IN BY TUESDAY 7TH MARCH 2023

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Consider the restricted sum of 14 biquadrates (which is to say, fourth powers)

x4 + y4 + (x+ y)4 + z41 + z42 + . . .+ z411.

(i) Show that no integer n with n ≡ 14 (mod 16) can be represented by this restricted
sum of 14 biquadrates.
(ii) Show that the congruence x4 + y4 + (x + y)4 + z41 + z42 + . . . + z411 ≡ n (mod 16) is
soluble with z1 odd whenever n ≡ r (mod 16) and 1 6 r 6 13.

A2. Apply the Cauchy-Davenport theorem to show that whenever n ∈ Z, and p is an
odd prime, then the congruence x4 + y4 + (x + y)4 + z41 + z42 + . . . + z411 ≡ n (mod p) is
soluble with (z1, p) = 1.

B3. Write

S(q, a) =

q∑
r=1

e
(ar4
q

)
and T (q, a) =

q∑
r=1

q∑
s=1

e
(a(r4 + s4 + (r + s)4)

q

)
.

Also, recall that as a consequence of Problems 3, Question C6, when (a, q) = 1, one has
S(q, a)� q3/4+ε.
(i) Prove the absolute convergence of the singular series

S(n) =
∞∑
q=1

q−13
q∑

a=1
(a,q)=1

S(q, a)11T (q, a)e(−na/q).

(ii) Deduce that for some positive number C, one has S(n) > 1
2

∏
p6C χp(n), where

χp(n) = lim
h→∞

p−12hMn(ph),

and Mn(ph) denotes the number of solutions of the congruence

x4 + y4 + (x+ y)4 + z41 + z42 + . . .+ z411 ≡ n (mod ph)

with 1 6 x, y, zi 6 ph.

B4. Let θ be a parameter satisfying 0 6 θ 6 1/3, and let S(X, θ) denote the number of
solutions of the Diophantine equation

x3 − y3 = u31 + u32 − u33 − u34,

with X < x, y 6 2X, and 1 6 ui 6 X1−θ.
(i) Show that for any solution of the above equation with x 6= y, we have |x−y| 6 X1−3θ.
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(ii) Using the substitution y = x + h, establish the upper bound S(X, θ) 6 XS0 + 2S1,
where S0 denotes the number of solutions of the equation u31 + u32 = u33 + u34, with
1 6 ui 6 X1−θ, and S1 denotes the number of solutions of the equation

h(3x2 + 3xh+ h2) = u31 + u32 − u33 − u34,
with 1 6 ui 6 X1−θ, 1 6 h 6 X1−3θ and X < x 6 2X.

B5. (a) Let X and H be large real numbers, and define

F (α) =
∑

X6x62X

∑
16h6H

e(αh(3x2 + 3xh+ h2)).

By using a modification of Hua’s lemma, show that∫ 1

0

|F (α)|4 dα� H3+εX2+ε.

(b) Recall the notation of question B4 and put H = X1−3θ and Q = X1−θ. Also, write

g(α) =
∑

16u6Q

e(αu3).

Show that

S1 =

∫ 1

0

F (α)|g(α)|4 dα,

and hence deduce that S1 � Xε(H3X2)1/4Q9/4.

C6. (a) Combine your answers to questions B4 and B5 to deduce that

S(X, θ)� Xε(X3−2θ +X(7−9θ)/2),

and hence deduce that S(X, 1/5)� X13/5+ε.
(b) Define

N (N) = card{1 6 n 6 N : n = x3 + y3 + z3, x, y, z ∈ N}.
By considering sums of three cubes of the shape counted by N (N) with X < x 6 2X
and 1 6 y, z 6 X1−θ, where X = 1

3
N1/3, deduce that N (N)� N13/15−ε.

C7. Write

f(α) =
∑

16z6X

e(αz4) and g(α) =
∑

16x,y6X

e(α(x4 + y4 + (x+ y)4)).

(i) Prove that ∫ 1

0

|g(α)2f(α)4| dα� X4+ε.

(ii) Apply the Hardy-Littlewood circle method to prove that, whenever n is a sufficiently
large positive integer satisfying n ≡ r (mod 16) with 1 6 r 6 13, then n is represented
as a sum of 14 positive integral biquadrates in the form

x4 + y4 + (x+ y)4 + z41 + z42 + . . .+ z411 = n.
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