
MA59800ANT ANALYTIC NUMBER THEORY. PROBLEMS 5

TO BE HANDED IN BY TUESDAY 11TH APRIL 2023

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. Suppose that X > R > 2 and n ∈ A(X,R). Show that for each prime number p
with 2 6 p 6 X, there is a unique decomposition n = uv, with u ∈ A(X, p) and v an
integer having all of its prime divisors π satisfying the condition p < π 6 R.

A2. Let P >M > R > 2, and define the set

B(M,π,R) = {v ∈ A(Mπ,R) : v > M , π|v and π′|v implies π′ > π}.

Here, the letters π and π′ are intended to denote prime numbers. Show that when
v ∈ A(P,R) satisfies v > M , there is a unique triple (π,m,w) having the property that
v = mw, w ∈ A(P/m, π) and m ∈ B(M,π,R).

B3. In this question, the function ρ(·) denotes the Dickman function.
(a) Show that, when X is sufficiently large and u > 1, one has

card{n ∈ [1, X] : n is not X1/u-smooth} = (1− ρ(u))X +O(X/ logX).

(b) Let η be any positive number larger than e−1/2 = 0.6065 . . .. Show that when n is
large, the set {n− a : a ∈ A(n, nη)} contains more than n/2 integers.
(c) Deduce that every large enough positive integer n is the sum of two nη-smooth
integers.
[Open problem: establish the same conclusion for arbitrarily small positive values of η].

B4. Let η be a positive number sufficiently small in terms of k > 3 and ε, and take R
to be a real number with 2 6 R 6 P η. Define

f(α;P,R) =
∑

x∈A(P,R)

e(αxk).

(a) Show that ∫ 1

0

|f(α;P,R)|6 dα� P λ3+ε,

where

λ3 = 3 +
2

k
.

(b) Show that ∫ 1

0

|f(α;P,R)|8 dα� P λ4+ε,

where

λ4 = 4 +
5

k
− 2

k2
.
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B5. (a) Show that the polynomial

Ψ(z;h;m) = m−4
(
(z + hm4)4 − z4

)
,

has a root z = −1
2
hm4. Hence deduce that, as a polynomial in z, h and m, the polynomial

Ψ(z;h;m) is divisible by h and 2z + hm4.
(b) Write

F1(α) =
∑

M<m6MR

∑
16h6H

∑
16z6P

e(Ψ(z;h;m)α).

Prove that ∫ 1

0

|F1(α;h;m)|2 dα� (PHMR)1+ε.

C6. Let k be an even integer with k > 4. Put

Ψ(z;h;m) = m−k
(
(z + hmk)k − zk

)
,

and define
F1(α) =

∑
M<m6MR

∑
16h6H

∑
16z6P

e(Ψ(z;h;m)α).

(a) Prove that ∫ 1

0

|F1(α;h;m)|2 dα� (PHMR)1+ε.

(b) Let θ be a positive number with 0 < θ 6 1/k, and write M = P θ, Q = P/M and
H = PM−k. Using the notation from the course, show that when R = P η, with η > 0
sufficiently small, one has

S3(P,R)� P 1+εM4Q2 + P εM3

(∫ 1

0

|F1(α)|2 dα

)1/2

(S4(Q,R))1/2 .

(c) Deduce that S3(P, P
η)� P λ3+ε, where λ3 = 3 +O(1/k2) as k →∞.

C7. Adopt the notation of question B5 and let k = 4. Take θ to be a real number with
1 6 θ 6 1/4, and put M = P θ, H = PM−4 and Q = PM−1.
(a) By adapting the proof of Hua’s Lemma, prove that∫ 1

0

|F1(α)|4 dα� P 2+ε(HMR)3.

(b) Taking R = P η, with η > 0 sufficiently small, show that

S3(P,R)� P 1+εM4Q2 + P εM3

(∫ 1

0

|F1(α)|3 dα

)1/3

(S3(Q,R))2/3 .

(c) By using the conclusion of question B5, and optimising the choice of θ, show that
S3(P,R)� P λ3+ε, where

λ3 =
7 +
√

33

4
= 3.1861406 . . . .
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