
MA59800ANT ANALYTIC NUMBER THEORY. PROBLEMS 6

TO BE HANDED IN BY TUESDAY 25TH APRIL 2023

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1. For each natural number k with k > 4, and each natural number s, let ∆ = ∆s,k

denote the positive solution with 0 < ∆ < k of the equation

∆e∆/k = ke1−2s/k.

(a) Show that ∆ < 1
2
k for s > 1

2
(1

2
+ log 2)k.

(b) Suppose that s = o(k) as k →∞. Show that ∆ = k − s+ δ, where

δ = (1 + o(1))
s2

4k
.

A2. Let η > 0 be sufficiently small in terms of t, k > 4 and ε, and write

fη(α) =
∑

x∈A(P,P η)

e(αxk).

(a) Show that when t > (1
2

+ log 2)k + 1, one has∫ 1

0

|fη(α)|t dα� P t−k/2.

(b) Suppose that t = o(k) as k →∞. Show that∫ 1

0

|fη(α)|t dα� P
1
2
t+(1+o(1)) t

2

16k .

B3. Let N be a large positive number, and write Pk = N1/k for each natural number k.
Furthermore, put

fk(α) =
∑

x∈A(Pk,Nη)

e(αxk) (k ∈ N).

(a) Show that, when k > 4 and t > (1
2

+ log 2)k + 1, one has∫ 1

0

|f2(α)2fk(α)t| dα� f2(0)2fk(0)tN ε−1.

(b) Show that, when k > 4 and t > (1
6

+ log 6
5
)k + 1, one has∫ 1

0

|f2(α)2f3(α)2fk(α)t| dα� f2(0)2f3(0)2fk(0)tN ε−1.

(c) What do these mean value estimates imply about the problem of representing an
integer as the sum of two squares and a number of k-th powers, or as the sum of two
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squares, two cubes, and a number of k-th powers? Brief remarks only here (no need to
write a rigorous proof)!

B4. Let s and k be natural numbers with k > 3, and suppose that η > 0 is sufficiently
small in terms of ε > 0 and s and k. Write R = P η, and consider the sets

B(Q,R) = {m ∈ [1, Q] ∩ Z : p|m implies
√
R < p 6 R}

and

C = {n ∈ [1, P ] ∩ Z : n = uw, where 1 6 u 6
√
R and w ∈ B(P/

√
R,R)}.

Also, define the exponential sum

h(α) =
∑
x∈C

e(αxk).

(a) Show that each element of C is uniquely represented in the form n = uw with u and
w as described in the definition of C.
(b) Show that for each natural number s, one has∫ 1

0

|h(α)|2s dα 6
∫ 1

0

∣∣∣∣ ∑
x∈A(P,R)

e(αxk)

∣∣∣∣2s dα.

C5. Adopt the same notation as in question B4, and write

S(q, a) =

q∑
r=1

e(ark/q) and v(β) =

∫ √R
0

e(βγk) dγ.

(a) Prove that card(C)� P (logP )−3/η.
(b) Suppose that α ∈ R, and a ∈ Z and q ∈ N satisfy (a, q) = 1, 1 6 q 6 R1/6 and
|qα− a| 6 R1/6P−k. Show that

h(α) = q−1S(q, a)
∑

w∈B(P/
√
R,R)

v((α− a/q)wk) +O(PR−1/6).

(c) Deduce, under the hypotheses of part (a), that one has the estimate

h(α)� P (logP )(q + P k|qα− a|)ε−1/k.
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