PURDUE UNIVERSITY

Department of Mathematics

INTRODUCTION TO NUMBER THEORY
 MA 49500 and MA 59500 - SOLUTIONS

13th December 2023120 minutes

This paper contains EIGHT questions worth a total of 200 points.
All EIGHT answers will be used for assessment.
Calculators, textbooks, notes and cribsheets are not permitted in this examination.

1. $[4+4+4+4+4+4+4+4+4+4=40$ points $]$ Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which may be false with " F ".
a. The congruence $x^{4} \equiv 1(\bmod 16)$ has precisely 4 distinct solutions modulo 16 .

Solution: FALSE (Each of the 8 integers 1, 3, 5, 7, 9, 11, 13, 15 are solutions for x).
b. There exist integers x and y having the property that $2023 x+97 y=1$.

Solution: TRUE (the integer 97 is prime, and since $97 \nmid 2023$ we see that $(2023,97)=1$, whence the Euclidean Algorithm confirms that the equation $2023 x+97 y=1$ has a solution in integers x, y).
c. The integer $n!+1$ is composite for infinitely many positive integers n.

Solution: TRUE (take $n=p-1$ with $p \geq 5$ prime, and apply Wilson's theorem to see that $n!\equiv-1(\bmod p)$, whence $p \mid(n!+1)$ and it follows that $n!+1$ is composite $)$.
d. The Euler totient $\varphi(n)$ is a multiplicative function of n.

Solution: TRUE (this is a basic result from the course).
e. The integer 2 is a primitive root modulo 31 .

Solution: FALSE (observe that $2^{5} \equiv 1(\bmod 31)$, so that 2 has order dividing 5 , which is less than 30 , whence 2 cannot be a primitive root modulo 31).
f. Let p be an odd prime. Then the congruence $x^{p-1}+1 \equiv 0\left(\bmod p^{2}\right)$ has precisely $p-1$ solutions modulo p^{2}.
Solution: FALSE (if the congruence has any solution x, then $p \nmid x$, and hence it follows from Fermat's Little Theorem that $x^{p-1}+1 \equiv 1+1=2(\bmod p)$, and since p is odd we conclude that $\left.x^{p-1}+1 \not \equiv 0\left(\bmod p^{2}\right)\right)$.
g. Let p be an odd prime, and suppose that a and b are both quadratic non-residues modulo p. Then $a b$ is a quadratic non-residue modulo p.
Solution: FALSE (if a and b are both quadratic non-residues modulo p, then we have $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)=-1$, so that $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=(-1)^{2}=1$ and $a b$ is a quadratic residue).
h. Let p be an odd prime number, and suppose that g is a primitive root modulo p. Then g is a quadratic non-residue.
Solution: TRUE (by Euler's criterion, we have $\left(\frac{g}{p}\right) \equiv g^{(p-1) / 2} \not \equiv 1(\bmod p)$, since the order of g modulo p is $p-1$, and hence $\left(\frac{g}{p}\right)=-1$ and g is a quadratic non-residue).
i. Suppose that the real number θ has continued fraction expansion $[2 ; 1,2,1,4,1,6,1,8, \ldots]$. Then θ is a quadratic irrational number.
Solution: FALSE (if θ is a quadratic irrational real number, then it has an ultimately periodic continued fraction expansion, and hence θ is not quadratic irrational).
j. The equation $x^{2}-2023 y^{2}=1$ has infinitely many solutions in integers x and y.

Solution: TRUE (since 2023 is not a square, it follows from the theory of Pell's equation that this equation has infinitely many solutions in x and y).
2. $[5+5+5+5+5+5=30$ points $]$
(a) Define the least common multiple of two non-zero integers a and b.

Solution: Non-zero integers a and b have a common multiple m when $a \mid m$ and $b \mid m$. The least common multiple of a and b is the smallest positive common multiple of these integers.
(b) Define the order of a reduced residue a modulo n.

Solution: The order of a modulo n is the smallest positive integer d satisfying the property that $a^{d} \equiv 1(\bmod n)$.
(c) Let n be a positive odd integer. Define the Jacobi symbol $\left(\frac{a}{n}\right)$.

Solution: Let Q be a positive odd integer, and suppose that $Q=p_{1} \ldots p_{s}$, where the p_{i} are prime numbers (not necessarily distinct). Then we define the Jacobi symbol $\left(\frac{a}{Q}\right)$ as follows:
(i) $\left(\frac{a}{1}\right)=1$; (ii) $\left(\frac{a}{Q}\right)=0$ whenever $(a, Q)>1$;
(iii) $\left(\frac{a}{Q}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \ldots\left(\frac{a}{p_{s}}\right)$ whenever $(a, Q)=1$.
(d) Define the partial quotients of the continued fraction expansion of a real number θ.

Solution: If the continued fraction expansion of θ is $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, then the integers a_{i} are the partial quotients of θ.
(e) Define what it means for a real number α to be transcendental.

Solution: The real number θ is transcendental if θ is not algebraic of any degree. That is, the number θ is not the root of any non-zero polynomial having rational coefficients.
(f) Let d be a positive integer which is not a perfect square. Define the fundamental solution of the Pell equation $x^{2}-d y^{2}=1$.
Solution: The unique solution (x, y) of the equation $x^{2}-d y^{2}=1$ in which x and y have their smallest positive values is called the fundamental solution.
3. $[4+7+7+7=25$ points $]$ For what values of n do primitive roots modulo n exist? (Provide as complete a list as you are able, without justifying your answer).
Solution: Primitive roots modulo n exist if and only if $n=1,2,4, p^{\alpha}$ or $2 p^{\alpha}$, wherein p denotes an odd prime number and $\alpha \in \mathbb{N}$.
(b) Let p be an odd prime, and suppose that g is a primitive root modulo p^{2}. By considering the solutions of the congruence $x^{2} \equiv 1\left(\bmod p^{2}\right)$, prove that

$$
g^{p(p-1) / 2} \equiv-1\left(\bmod p^{2}\right)
$$

Solution: Put $x=g^{p(p-1) / 2}$, and observe that one then has $x^{2}=g^{p(p-1)} \equiv 1\left(\bmod p^{2}\right)$, as a consequence of Euler's Theorem. But then $(x+1)(x-1) \equiv 0\left(\bmod p^{2}\right)$. One has $(x+1, x-1)=(x+1,2) \mid 2$, so that p (an odd prime) cannot divide both $x+1$ and $x-1$. Thus we see that $x \equiv \pm 1\left(\bmod p^{2}\right)$. But since g is primitive, it has order $\phi\left(p^{2}\right)=p(p-1)$, and hence $g^{p(p-1) / 2} \not \equiv 1\left(\bmod p^{2}\right)$. Thus we deduce that $x=g^{p(p-1) / 2} \equiv-1\left(\bmod p^{2}\right)$, as required.

Cont...
(c) Let p be an odd prime, and let a be an integer with $(a, p)=1$. Show that when the congruence $x^{2} \equiv a\left(\bmod p^{2}\right)$ has a solution, then

$$
a^{p(p-1) / 2} \equiv 1\left(\bmod p^{2}\right),
$$

and when the congruence $x^{2} \equiv a\left(\bmod p^{2}\right)$ has no solution, then

$$
a^{p(p-1) / 2} \equiv-1\left(\bmod p^{2}\right) .
$$

Solution: Suppose that $(a, p)=1$. When the congruence $x^{2} \equiv a\left(\bmod p^{2}\right)$ has a solution, then $(x, p)=1$, and one has $a^{p(p-1) / 2} \equiv x^{p(p-1)} \equiv 1\left(\bmod p^{2}\right)$, as a consequence of Euler's Theorem. This confirms the first assertion. Suppose next that the congruence $x^{2} \equiv a\left(\bmod p^{2}\right)$ has no solution. Let g be a primitive root modulo p^{2}. Then there exists an integer r for which $g^{r} \equiv a\left(\bmod p^{2}\right)$, and r must be odd for otherwise the congruence $x^{2} \equiv a\left(\bmod p^{2}\right)$ would be soluble. Put $r=2 s+1$. Then, again by Euler's Theorem, one has $a^{p(p-1) / 2} \equiv g^{s p(p-1)+p(p-1) / 2} \equiv g^{p(p-1) / 2}\left(\bmod p^{2}\right)$. Hence, by part (i), one has $a^{p(p-1) / 2} \equiv-1\left(\bmod p^{2}\right)$ in this case, confirming the second assertion.
(d) Let p be an odd prime, and define

$$
\left[\frac{a}{p^{2}}\right]= \begin{cases}+1, & \text { when }(a, p)=1 \text { and } x^{2} \equiv a\left(\bmod p^{2}\right) \text { has a solution, } \\ -1, & \text { when }(a, p)=1 \text { and } x^{2} \equiv a\left(\bmod p^{2}\right) \text { has no solution, } \\ 0, & \text { when } p \mid a .\end{cases}
$$

Prove that $\left[\frac{a}{p^{2}}\right] \equiv a^{p(p-1) / 2}\left(\bmod p^{2}\right)$, and hence deduce that

$$
\left[\frac{-1}{p^{2}}\right]=(-1)^{(p-1) / 2} \quad \text { and } \quad\left[\frac{a b}{p^{2}}\right]=\left[\frac{a}{p^{2}}\right]\left[\frac{b}{p^{2}}\right]
$$

Solution: First, since p is odd, one has $p(p-1) / 2 \geq 3$. Thus, when $p \mid a$ one finds that $a^{p(p-1) / 2} \equiv 0\left(\bmod p^{2}\right)$. Then when $p \mid a$ one has

$$
\left[\frac{a}{p^{2}}\right] \equiv 0 \equiv a^{p(p-1) / 2}\left(\bmod p^{2}\right) .
$$

When $(a, p)=1$, meanwhile, then by applying (c)(ii), one sees directly that

$$
\left[\frac{a}{p^{2}}\right] \equiv a^{p(p-1) / 2}\left(\bmod p^{2}\right)
$$

The conclusion follows on noting that, since $p^{2}>2$, the congruence $\left[\frac{a}{p^{2}}\right] \equiv \pm 1\left(\bmod p^{2}\right)$ implies that $\left[\frac{a}{p^{2}}\right]= \pm 1$. Hence, since p is odd, one finds that

$$
\left[\frac{-1}{p^{2}}\right] \equiv(-1)^{p(p-1) / 2}=(-1)^{(p-1) / 2}
$$

implies that $\left[\frac{-1}{p^{2}}\right]=(-1)^{(p-1) / 2}$, and likewise

$$
\left[\frac{a b}{p^{2}}\right] \equiv(a b)^{p(p-1) / 2} \equiv a^{p(p-1) / 2} b^{p(p-1) / 2} \equiv\left[\frac{a}{p^{2}}\right]\left[\frac{b}{p^{2}}\right]\left(\bmod p^{2}\right)
$$

implies that $\left[\frac{a b}{p^{2}}\right]=\left[\frac{a}{p^{2}}\right]\left[\frac{b}{p^{2}}\right]\left(\bmod p^{2}\right)$.
4. $[4+8+8=20$ points] (a) State a version of Hensel's lemma.

Solution: Hensel's Lemma: Let $f(x) \in \mathbb{Z}[x]$. Suppose that $f(a) \equiv 0\left(\bmod p^{j}\right)$, and that $p^{\tau} \| f^{\prime}(a)$. Then if $j \geq 2 \tau+1$, it follows that (1) whenever $b \equiv a\left(\bmod p^{j-\tau}\right)$, one has $f(b) \equiv f(a)\left(\bmod p^{j}\right)$ and $p^{\tau} \| f^{\prime}(b) ;(2)$ there exists a unique residue $t(\bmod p)$ with the property that $f\left(a+t p^{j-\tau}\right) \equiv 0\left(\bmod p^{j+1}\right)$. [acceptable to quote this with $\tau=0$]
(b) Let p be an odd prime. Show that the congruence

$$
x^{p}-2 x+1 \equiv 0(\bmod p)
$$

has precisely one solution modulo p, and determine that solution.
Solution: By Fermat's Little theorem, for any integer x, one has

$$
x^{p}-2 x+1 \equiv x-2 x+1=-x+1(\bmod p) .
$$

Thus, the congruence in question has the solution given by $x \equiv 1(\bmod p)$, and no other solutions.
(c) Let p be an odd prime number, and let j be an integer with $j \geq 2$. Determine the number of solutions of the congruence

$$
x^{p}-2 x+1 \equiv 0\left(\bmod p^{j}\right) .
$$

Justify your answer.
Solution: The congruence in question has only the solution $x \equiv 1(\bmod p)$ when $j=1$. Write $f(t)=t^{p}-2 t+1$. Then $f^{\prime}(t)=p t^{p-1}-2$ and so, since p is odd, one has $f^{\prime}(1) \equiv$ $-2 \not \equiv 0(\bmod p)$. Then $p^{0} \| f^{\prime}(1)$, and by Hensel's Lemma, for every $j \geq 2$, the solution $x=1$ of the congruence modulo p lifts uniquely to a solution modulo p^{j}. Then there is precisely one solution modulo p^{j} to the congruence in question.
5. $[4+8+5+8=25$ points] (a) State, without proof, the Law of Quadratic Reciprocity for the Legendre symbol.
Solution: Quadratic Reciprocity: Let p and q be distinct odd prime numbers. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{1}{4}(p-1)(q-1)} .
$$

(b) Determine the primes p for which 5 is a quadratic residue modulo p.

Solution: If 5 is to be a quadratic residue modulo p, then by quadratic reciprocity,

$$
1=\left(\frac{5}{p}\right)=(-1)^{\frac{1}{4}(5-1)(p-1)}\left(\frac{p}{5}\right)=\left(\frac{p}{5}\right) .
$$

But the quadratic residues modulo 5 are $1^{2} \equiv 4^{2} \equiv 1(\bmod 5)$ and $2^{2} \equiv 3^{2} \equiv-1(\bmod 5)$, and so $\left(\frac{5}{p}\right)=1$ if and only if $p \equiv \pm 1(\bmod 5)$.

Cont...
(c) Show that when k is a natural number, then $5 k+2$ must be divisible by a prime number p satisfying $p \equiv \pm 2(\bmod 5)$.
Solution: All prime numbers except 5 take the shape either $5 n \pm 1$ or $5 n \pm 2$, for integral n. The integer $5 k+2$ is not divisible by 5 . If it were divisible only by primes of the shape $5 n \pm 1$, then one would have $5 k+2 \equiv \pm 1(\bmod 5)$, which is impossible. Thus $5 k+2$ must be divisible by at least one of the remaining class of primes of the shape $5 n \pm 2$, proving the claim.
(d) Show that the Diophantine equation

$$
y^{2}=x\left(5 x^{2}+2\right)+5
$$

has no solution in integers x and y.
Solution: Suppose by way of deriving a contradiction that (x, y) is an integral solution of this equation. Since 5 is not a square, the equation has no solution with $x=0$. When x is non-zero, meanwhile, the term $x\left(5 x^{2}+2\right)$ is a multiple of an integer of the shape $5 k+2$, and hence (part (c)) is divisible by an odd prime p satisfying $p \equiv \pm 2(\bmod 5)$. But then $y^{2} \equiv 5(\bmod p)$, so that y is a quadratic residue modulo p. By (b), meanwhile, this is possible only when $p \equiv \pm 1(\bmod 5)$, yielding a contradiction. Then the equation in question has no integral solutions.
6. $[10+10=20$ points] (a) Suppose that $a(n)$ and $b(n)$ are multiplicative functions. Show that the arithmetic function $c(n)=\sum_{d \mid n} a(n / d) b(d)$ is also multiplicative.
Solution: Suppose that $a(n)$ and $b(n)$ are multiplicative. Then whenever $m, n \in \mathbb{N}$ satisfy $(m, n)=1$, we have $a(m n)=a(m) a(n)$ and $b(m n)=b(m) b(n)$, whence

$$
c(m n)=\sum_{d \mid m n} a(n m / d) b(d)=\sum_{e \mid n} \sum_{f \mid m} a\left(\frac{n}{e} \frac{m}{f}\right) b(e f) .
$$

Since the values of e and f in the latter summation are necessarily coprime, we find that

$$
\begin{aligned}
c(m n) & =\sum_{e \mid n} \sum_{f \mid m} a(n / e) a(m / f) b(e) b(f) \\
& =\left(\sum_{e \mid n} a(n / e) b(e)\right)\left(\sum_{f \mid m} a(m / f) b(f)\right)=c(m) c(n) .
\end{aligned}
$$

Thus $c(n)$ is indeed a multiplicative function.
(b) Show that $\sigma(n)=\sum_{d \mid n} \varphi(n / d) \tau(d)$.

Solution: For each prime power p^{h} one has

$$
\begin{aligned}
\sum_{j=0}^{h} \phi\left(p^{h-j}\right) \tau\left(p^{j}\right) & =\sum_{j=0}^{h-1}\left(p^{h-j}-p^{h-j-1}\right)(j+1)+\phi\left(p^{0}\right) \tau\left(p^{h}\right) \\
& =p^{h}+p^{h-1}+\cdots+p-h+h+1=\sum_{d \mid p^{h}} d=\sigma\left(p^{h}\right)
\end{aligned}
$$

and so

$$
\sigma\left(p^{h}\right)=\sum_{d \mid p^{h}} \phi\left(p^{h} / d\right) \tau(d)
$$

Thus it follows from multiplicativity that $\sigma(n)=\sum_{d \mid n} \phi(n / d) \tau(d)$ for $n \in \mathbb{N}$.
Continued...

Cont...
7. $[10+10=20$ points $]$ Define the arithmetic function $\sigma_{-1}: \mathbb{N} \rightarrow \mathbb{R}$ by putting

$$
\sigma_{-1}(n)=\sum_{d \mid n} \frac{1}{d}
$$

(a) Find an asymptotic formula for the average

$$
\frac{1}{x} \sum_{1 \leq n \leq x} \sigma_{-1}(n)
$$

Solution: One has

$$
\begin{aligned}
\sum_{1 \leq n \leq x} \sigma_{-1}(n) & =\sum_{1 \leq n \leq x} \sum_{d \mid n} \frac{1}{d}=\sum_{1 \leq d \leq x} \frac{1}{d} \sum_{1 \leq m \leq x / d} 1=\sum_{1 \leq d \leq x} \frac{1}{d}\left\lfloor\frac{x}{d}\right\rfloor \\
& =x \sum_{1 \leq d \leq x} \frac{1}{d^{2}}+O\left(\sum_{1 \leq d \leq x} \frac{1}{d}\right)=x \sum_{d=1}^{\infty} \frac{1}{d^{2}}+O\left(x \sum_{d>x} \frac{1}{d^{2}}\right)+O(\log x)
\end{aligned}
$$

and hence

$$
\frac{1}{x} \sum_{1 \leq n \leq x} \sigma_{-1}(n)=\frac{6}{\pi^{2}}+O\left(\frac{\log x}{x}\right)
$$

(b) By using multiplicativity, prove that $\varphi(n) \sigma_{-1}(n) \leq n$ for all natural numbers n.

Solution: Observe that whenever p is prime and $h \geq 0$, one has

$$
\varphi\left(p^{h}\right) \sigma_{-1}\left(p^{h}\right)=p^{h}(1-1 / p)\left(1+p^{-1}+\ldots+p^{-h}\right)=p^{h}\left(1-p^{-h-1}\right) \leq p^{h}
$$

Hence, making use of the multiplicative properties of $\varphi(n), \sigma(n)$ and n, we deduce that for each natural number n one has

$$
\varphi(n) \sigma_{-1}(n)=\prod_{p^{h} \| n} \varphi\left(p^{h}\right) \sigma_{-1}\left(p^{h}\right) \leq \prod_{p^{h} \| n} p^{h}=n .
$$

8. $[4+8+8=20$ points $]$ (a) State Dirichlet's Theorem on Diophantine approximation.

Solution: Let θ be a real number. Then whenever Q is a real number exceeding 1 , there exist integers p and q with $1 \leq q<Q$ and $(p, q)=1$ such that $|q \theta-p| \leq 1 / Q$.
(b) Obtain the continued fraction expansion of the quadratic irrational $\sqrt{11}$.

Solution: One has

$$
\begin{aligned}
{[\sqrt{11}] } & =3, & & 1 /(\sqrt{11}-3)=(\sqrt{11}+3) / 2 \\
{[(\sqrt{11}+3) / 2] } & =3, & & 1 /((\sqrt{11}+3) / 2-3)=2 /(\sqrt{11}+3-6)=\sqrt{11}+3 \\
{[\sqrt{11}+3] } & =6, & & 1 /(\sqrt{11}+3-6)=(\sqrt{11}+3) / 2
\end{aligned}
$$

and we obtain repetition. Thus $\sqrt{11}=[3 ; \overline{3,6}]$.
(c) Find the fundamental solution of the Pell equation $x^{2}-11 y^{2}=1$, and hence write down a formula that describes all integer solutions of this Pell equation.
Solution: The continued fraction for $\sqrt{11}$ has periodic tail with period 2 , so the fundamental solution is given by the the convergent $p_{1} / q_{1}=3+1 / 3=10 / 3$. Thus, we use the fundamental solution $(x, y)=(10,3)$ (giving $10^{2}-11 \cdot 3^{2}=1$), and then deduce that all solutions (x, y) are determined via the relation $x+y \sqrt{11}= \pm(10+3 \sqrt{11})^{n}(n \in \mathbb{Z})$.

End of examination.

