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1. [4+4+4+4+4+4+4+4+4+4=40 points] Decide which of the following statements are nec-
essarily true, and which may be false. Mark those which are true with “T”, and those
which may be false with “F”.

a. The congruence x4 ≡ 1 (mod 16) has precisely 4 distinct solutions modulo 16.

Solution: FALSE (Each of the 8 integers 1, 3, 5, 7, 9, 11, 13, 15 are solutions for x).

b. There exist integers x and y having the property that 2023x+ 97y = 1.

Solution: TRUE (the integer 97 is prime, and since 97 - 2023 we see that (2023, 97) = 1,
whence the Euclidean Algorithm confirms that the equation 2023x+97y = 1 has a solution
in integers x, y).

c. The integer n! + 1 is composite for infinitely many positive integers n.

Solution: TRUE (take n = p − 1 with p ≥ 5 prime, and apply Wilson’s theorem to see
that n! ≡ −1 (mod p), whence p|(n! + 1) and it follows that n! + 1 is composite).

d. The Euler totient ϕ(n) is a multiplicative function of n.

Solution: TRUE (this is a basic result from the course).

e. The integer 2 is a primitive root modulo 31.

Solution: FALSE (observe that 25 ≡ 1 (mod 31), so that 2 has order dividing 5, which is
less than 30, whence 2 cannot be a primitive root modulo 31).

f. Let p be an odd prime. Then the congruence xp−1 + 1 ≡ 0 (mod p2) has precisely p− 1
solutions modulo p2.

Solution: FALSE (if the congruence has any solution x, then p - x, and hence it follows
from Fermat’s Little Theorem that xp−1 + 1 ≡ 1 + 1 = 2 (mod p), and since p is odd we
conclude that xp−1 + 1 6≡ 0 (mod p2)).

g. Let p be an odd prime, and suppose that a and b are both quadratic non-residues
modulo p. Then ab is a quadratic non-residue modulo p.

Solution: FALSE (if a and b are both quadratic non-residues modulo p, then we have(
a

p

)
=

(
b

p

)
= −1, so that

(
a

p

)(
b

p

)
= (−1)2 = 1 and ab is a quadratic residue).

h. Let p be an odd prime number, and suppose that g is a primitive root modulo p. Then
g is a quadratic non-residue.

Solution: TRUE (by Euler’s criterion, we have

(
g

p

)
≡ g(p−1)/2 6≡ 1 (mod p), since the

order of g modulo p is p− 1, and hence

(
g

p

)
= −1 and g is a quadratic non-residue).

i. Suppose that the real number θ has continued fraction expansion [2; 1, 2, 1, 4, 1, 6, 1, 8, . . .].
Then θ is a quadratic irrational number.

Solution: FALSE (if θ is a quadratic irrational real number, then it has an ultimately
periodic continued fraction expansion, and hence θ is not quadratic irrational).

j. The equation x2 − 2023y2 = 1 has infinitely many solutions in integers x and y.

Solution: TRUE (since 2023 is not a square, it follows from the theory of Pell’s equation
that this equation has infinitely many solutions in x and y).

Continued...
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2. [5+5+5+5+5+5=30 points]

(a) Define the least common multiple of two non-zero integers a and b.

Solution: Non-zero integers a and b have a common multiple m when a|m and b|m. The
least common multiple of a and b is the smallest positive common multiple of these integers.

(b) Define the order of a reduced residue a modulo n.

Solution: The order of a modulo n is the smallest positive integer d satisfying the property
that ad ≡ 1 (mod n).

(c) Let n be a positive odd integer. Define the Jacobi symbol
(a
n

)
.

Solution: Let Q be a positive odd integer, and suppose that Q = p1 . . . ps, where the pi

are prime numbers (not necessarily distinct). Then we define the Jacobi symbol

(
a

Q

)
as follows:

(i)
(a

1

)
= 1; (ii)

(
a

Q

)
= 0 whenever (a,Q) > 1;

(iii)

(
a

Q

)
=

(
a

p1

)(
a

p2

)
. . .

(
a

ps

)
whenever (a,Q) = 1.

(d) Define the partial quotients of the continued fraction expansion of a real number θ.

Solution: If the continued fraction expansion of θ is [a0; a1, a2, . . .], then the integers ai
are the partial quotients of θ.

(e) Define what it means for a real number α to be transcendental.

Solution: The real number θ is transcendental if θ is not algebraic of any degree. That
is, the number θ is not the root of any non-zero polynomial having rational coefficients.

(f) Let d be a positive integer which is not a perfect square. Define the fundamental solution
of the Pell equation x2 − dy2 = 1.

Solution: The unique solution (x, y) of the equation x2 − dy2 = 1 in which x and y have
their smallest positive values is called the fundamental solution.

3. [4+7+7+7=25 points] For what values of n do primitive roots modulo n exist? (Provide
as complete a list as you are able, without justifying your answer).

Solution: Primitive roots modulo n exist if and only if n = 1, 2, 4, pα or 2pα, wherein p
denotes an odd prime number and α ∈ N.

(b) Let p be an odd prime, and suppose that g is a primitive root modulo p2. By considering
the solutions of the congruence x2 ≡ 1 (mod p2), prove that

gp(p−1)/2 ≡ −1 (mod p2).

Solution: Put x = gp(p−1)/2, and observe that one then has x2 = gp(p−1) ≡ 1 (mod p2),
as a consequence of Euler’s Theorem. But then (x + 1)(x − 1) ≡ 0 (mod p2). One has
(x+ 1, x− 1) = (x+ 1, 2)|2, so that p (an odd prime) cannot divide both x+ 1 and x− 1.
Thus we see that x ≡ ±1 (mod p2). But since g is primitive, it has order φ(p2) = p(p− 1),
and hence gp(p−1)/2 6≡ 1 (mod p2). Thus we deduce that x = gp(p−1)/2 ≡ −1 (mod p2), as
required.

Continued...
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(c) Let p be an odd prime, and let a be an integer with (a, p) = 1. Show that when the
congruence x2 ≡ a (mod p2) has a solution, then

ap(p−1)/2 ≡ 1 (mod p2),

and when the congruence x2 ≡ a (mod p2) has no solution, then

ap(p−1)/2 ≡ −1 (mod p2).

Solution: Suppose that (a, p) = 1. When the congruence x2 ≡ a (mod p2) has a so-
lution, then (x, p) = 1, and one has ap(p−1)/2 ≡ xp(p−1) ≡ 1 (mod p2), as a consequence
of Euler’s Theorem. This confirms the first assertion. Suppose next that the congruence
x2 ≡ a (mod p2) has no solution. Let g be a primitive root modulo p2. Then there exists
an integer r for which gr ≡ a (mod p2), and r must be odd for otherwise the congruence
x2 ≡ a (mod p2) would be soluble. Put r = 2s + 1. Then, again by Euler’s Theorem,
one has ap(p−1)/2 ≡ gsp(p−1)+p(p−1)/2 ≡ gp(p−1)/2 (mod p2). Hence, by part (i), one has
ap(p−1)/2 ≡ −1 (mod p2) in this case, confirming the second assertion.

(d) Let p be an odd prime, and define[
a

p2

]
=


+1, when (a, p) = 1 and x2 ≡ a (mod p2) has a solution,

−1, when (a, p) = 1 and x2 ≡ a (mod p2) has no solution,

0, when p|a.

Prove that

[
a

p2

]
≡ ap(p−1)/2 (mod p2), and hence deduce that[

−1

p2

]
= (−1)(p−1)/2 and

[
ab

p2

]
=

[
a

p2

][
b

p2

]
.

Solution: First, since p is odd, one has p(p − 1)/2 ≥ 3. Thus, when p|a one finds that
ap(p−1)/2 ≡ 0 (mod p2). Then when p|a one has[

a

p2

]
≡ 0 ≡ ap(p−1)/2 (mod p2).

When (a, p) = 1, meanwhile, then by applying (c)(ii), one sees directly that[
a

p2

]
≡ ap(p−1)/2 (mod p2).

The conclusion follows on noting that, since p2 > 2, the congruence

[
a

p2

]
≡ ±1 (mod p2)

implies that

[
a

p2

]
= ±1. Hence, since p is odd, one finds that[

−1

p2

]
≡ (−1)p(p−1)/2 = (−1)(p−1)/2

implies that

[
−1

p2

]
= (−1)(p−1)/2, and likewise[

ab

p2

]
≡ (ab)p(p−1)/2 ≡ ap(p−1)/2bp(p−1)/2 ≡

[
a

p2

] [
b

p2

]
(mod p2)

implies that

[
ab

p2

]
=

[
a

p2

] [
b

p2

]
(mod p2).

Continued...
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4. [4+8+8=20 points] (a) State a version of Hensel’s lemma.

Solution: Hensel’s Lemma: Let f(x) ∈ Z[x]. Suppose that f(a) ≡ 0 (mod pj), and that
pτ‖f ′(a). Then if j ≥ 2τ + 1, it follows that (1) whenever b ≡ a (mod pj−τ ), one has
f(b) ≡ f(a) (mod pj) and pτ‖f ′(b); (2) there exists a unique residue t (mod p) with the
property that f(a+ tpj−τ ) ≡ 0 (mod pj+1). [acceptable to quote this with τ = 0]

(b) Let p be an odd prime. Show that the congruence

xp − 2x+ 1 ≡ 0 (mod p)

has precisely one solution modulo p, and determine that solution.

Solution: By Fermat’s Little theorem, for any integer x, one has

xp − 2x+ 1 ≡ x− 2x+ 1 = −x+ 1 (mod p).

Thus, the congruence in question has the solution given by x ≡ 1 (mod p), and no other
solutions.

(c) Let p be an odd prime number, and let j be an integer with j ≥ 2. Determine the
number of solutions of the congruence

xp − 2x+ 1 ≡ 0 (mod pj).

Justify your answer.

Solution: The congruence in question has only the solution x ≡ 1 (mod p) when j = 1.
Write f(t) = tp − 2t + 1. Then f ′(t) = ptp−1 − 2 and so, since p is odd, one has f ′(1) ≡
−2 6≡ 0 (mod p). Then p0‖f ′(1), and by Hensel’s Lemma, for every j ≥ 2, the solution
x = 1 of the congruence modulo p lifts uniquely to a solution modulo pj. Then there is
precisely one solution modulo pj to the congruence in question.

5. [4+8+5+8=25 points] (a) State, without proof, the Law of Quadratic Reciprocity for the
Legendre symbol.

Solution: Quadratic Reciprocity: Let p and q be distinct odd prime numbers. Then(
p

q

)(
q

p

)
= (−1)

1
4
(p−1)(q−1).

(b) Determine the primes p for which 5 is a quadratic residue modulo p.

Solution: If 5 is to be a quadratic residue modulo p, then by quadratic reciprocity,

1 =

(
5

p

)
= (−1)

1
4
(5−1)(p−1)

(p
5

)
=
(p

5

)
.

But the quadratic residues modulo 5 are 12 ≡ 42 ≡ 1 (mod 5) and 22 ≡ 32 ≡ −1 (mod 5),

and so

(
5

p

)
= 1 if and only if p ≡ ±1 (mod 5).

Continued...
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(c) Show that when k is a natural number, then 5k+2 must be divisible by a prime number
p satisfying p ≡ ±2 (mod 5).

Solution: All prime numbers except 5 take the shape either 5n± 1 or 5n± 2, for integral
n. The integer 5k + 2 is not divisible by 5. If it were divisible only by primes of the shape
5n± 1, then one would have 5k+ 2 ≡ ±1 (mod 5), which is impossible. Thus 5k+ 2 must
be divisible by at least one of the remaining class of primes of the shape 5n ± 2, proving
the claim.

(d) Show that the Diophantine equation

y2 = x(5x2 + 2) + 5

has no solution in integers x and y.

Solution: Suppose by way of deriving a contradiction that (x, y) is an integral solution
of this equation. Since 5 is not a square, the equation has no solution with x = 0. When
x is non-zero, meanwhile, the term x(5x2 + 2) is a multiple of an integer of the shape
5k + 2, and hence (part (c)) is divisible by an odd prime p satisfying p ≡ ±2 (mod 5).
But then y2 ≡ 5 (mod p), so that y is a quadratic residue modulo p. By (b), meanwhile,
this is possible only when p ≡ ±1 (mod 5), yielding a contradiction. Then the equation in
question has no integral solutions.

6. [10+10=20 points] (a) Suppose that a(n) and b(n) are multiplicative functions. Show that
the arithmetic function c(n) =

∑
d|n a(n/d)b(d) is also multiplicative.

Solution: Suppose that a(n) and b(n) are multiplicative. Then whenever m,n ∈ N satisfy
(m,n) = 1, we have a(mn) = a(m)a(n) and b(mn) = b(m)b(n), whence

c(mn) =
∑
d|mn

a(nm/d)b(d) =
∑
e|n

∑
f |m

a

(
n

e

m

f

)
b(ef).

Since the values of e and f in the latter summation are necessarily coprime, we find that

c(mn) =
∑
e|n

∑
f |m

a(n/e)a(m/f)b(e)b(f)

=

(∑
e|n

a(n/e)b(e)

)(∑
f |m

a(m/f)b(f)

)
= c(m)c(n).

Thus c(n) is indeed a multiplicative function.

(b) Show that σ(n) =
∑

d|n ϕ(n/d)τ(d).

Solution: For each prime power ph one has

h∑
j=0

φ(ph−j)τ(pj) =
h−1∑
j=0

(ph−j − ph−j−1)(j + 1) + φ(p0)τ(ph)

= ph + ph−1 + · · ·+ p− h+ h+ 1 =
∑
d|ph

d = σ(ph),

and so
σ(ph) =

∑
d|ph

φ(ph/d)τ(d).

Thus it follows from multiplicativity that σ(n) =
∑

d|n φ(n/d)τ(d) for n ∈ N.

Continued...
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7. [10+10=20 points] Define the arithmetic function σ−1 : N→ R by putting

σ−1(n) =
∑
d|n

1

d
.

(a) Find an asymptotic formula for the average

1

x

∑
1≤n≤x

σ−1(n).

Solution: One has∑
1≤n≤x

σ−1(n) =
∑

1≤n≤x

∑
d|n

1

d
=
∑

1≤d≤x

1

d

∑
1≤m≤x/d

1 =
∑

1≤d≤x

1

d

⌊x
d

⌋

= x
∑

1≤d≤x

1

d2
+O

( ∑
1≤d≤x

1

d

)
= x

∞∑
d=1

1

d2
+O

(
x
∑
d>x

1

d2

)
+O(log x),

and hence
1

x

∑
1≤n≤x

σ−1(n) =
6

π2
+O

(
log x

x

)
.

(b) By using multiplicativity, prove that ϕ(n)σ−1(n) ≤ n for all natural numbers n.

Solution: Observe that whenever p is prime and h ≥ 0, one has

ϕ(ph)σ−1(p
h) = ph(1− 1/p)

(
1 + p−1 + . . .+ p−h

)
= ph(1− p−h−1) ≤ ph.

Hence, making use of the multiplicative properties of ϕ(n), σ(n) and n, we deduce that for
each natural number n one has

ϕ(n)σ−1(n) =
∏
ph‖n

ϕ(ph)σ−1(p
h) ≤

∏
ph‖n

ph = n.

8. [4+8+8=20 points] (a) State Dirichlet’s Theorem on Diophantine approximation.

Solution: Let θ be a real number. Then whenever Q is a real number exceeding 1, there
exist integers p and q with 1 ≤ q < Q and (p, q) = 1 such that |qθ − p| ≤ 1/Q.

(b) Obtain the continued fraction expansion of the quadratic irrational
√

11.

Solution: One has

[
√

11] = 3, 1/(
√

11− 3) = (
√

11 + 3)/2,

[(
√

11 + 3)/2] = 3, 1/((
√

11 + 3)/2− 3) = 2/(
√

11 + 3− 6) =
√

11 + 3,

[
√

11 + 3] = 6, 1/(
√

11 + 3− 6) = (
√

11 + 3)/2,

and we obtain repetition. Thus
√

11 = [3; 3, 6].

(c) Find the fundamental solution of the Pell equation x2−11y2 = 1, and hence write down
a formula that describes all integer solutions of this Pell equation.

Solution: The continued fraction for
√

11 has periodic tail with period 2, so the funda-
mental solution is given by the the convergent p1/q1 = 3 + 1/3 = 10/3. Thus, we use the
fundamental solution (x, y) = (10, 3) (giving 102 − 11 · 32 = 1), and then deduce that all
solutions (x, y) are determined via the relation x+ y

√
11 = ±(10 + 3

√
11)n (n ∈ Z).

End of examination.
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