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1. [4+4+4+4+4=20 points] Decide which of the following statements are necessarily true,
and which may be false. Mark those which are true with “T”, and those which are false
with “F”.

a. Let p be a prime number. Then for every integer a, one has ap
2 ≡ a (mod p).

Solution: TRUE (Since ap ≡ a (mod p), one has ap
2 ≡ ap ≡ a (mod p)).

b. The least common multiple of two non-zero integers a and b is the largest positive value
of ax+ by, as x and y range over Z.

Solution: FALSE (This is superficially similar to a true fact for greatest common divisors,
but here the set of positive values is unbounded).

c. Let c1, c2,m1,m2 be integers with 1 ≤ m1 < m2. Then the two congruences

x ≡ c1 (mod m1) and x ≡ c2 (mod m2)

do not have a simultaneous integer solution x unless (m1,m2) = 1.

Solution: FALSE (Consider, for example, m1 = 2, m2 = 4, c1 = c2 = 0, so that the two
congruences in question are x ≡ 0 (mod 2) and x ≡ 0 (mod 4), with solution x = 0, and
yet (2, 4) 6= 1).

d. Let a and b be natural numbers. Then ab divides (a, b)[a, b].

Solution: TRUE (We proved that (a, b)[a, b] = |ab|).

e. When p is prime and d ∈ N, the congruence xd ≡ 1 (mod p) always has d solutions.

Solution: FALSE (Consider for example p = 5, d = 3 so that (p − 1, d) = (4, 3) = 1,
whence xd ≡ 1 (mod p) has a unique solution).

2. [5+5+5+5=20 points]

(a) Let a and b be integers, not both 0. Define what is meant by the greatest common
divisor (a, b) of a and b.

Solution: The greatest common divisor of a and b is the largest (positive) integer d having
the property that d|a and d|b.

(b) Define what is meant by a multiplicative function.

Solution: A function f : N → C is multiplicative if (i) f is not identically zero, and (ii)
whenever (m,n) = 1, then f(mn) = f(m)f(n).

(c) Define the Euler totient (Euler’s ϕ-function).

Solution: The number of elements in a reduced residue system is denoted by ϕ(n). Thus
ϕ(n) = card{1 ≤ a ≤ n : (a, n) = 1}.

(d) Let m ∈ N. Define what is meant by a reduced residue system modulo m.

Solution: A reduced residue system modulo m is a set of integers r1, . . . , rn satisfying (i)
(ri,m) = 1 for 1 ≤ i ≤ n, (ii) ri 6≡ rj (mod m) for i 6= j, and (iii) whenever (x,m) = 1,
then x ≡ ri (mod m) for some i with 1 ≤ i ≤ n.

Continued...
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3. [6+6=12 points] (a) Let n be a natural number with n > 1. Compute (n2 − 1, n3 + 1).

Solution: One has (n2 − 1, n3 + 1) = (n2 − 1, n3 + 1 − n(n2 − 1)) = (n2 − 1, n + 1), and
(n2 − 1, n+ 1) = (n2 − 1− (n− 1)(n+ 1), n+ 1) = (0, n+ 1) = n+ 1.

(b) Prove that there are infinitely many primes of the shape 6k − 1 (k ∈ N).

Solution: Every prime other than 2 and 3 is of the shape 6k ± 1. Suppose that there are
only finitely many prime numbers of the shape 6k− 1 with k ≥ 1, say p1, . . . , pn. Consider
the integer Q = 6p1 . . . pn − 1. The integer Q is odd, not divisible by 3, and of the shape
6k − 1, so cannot be divisible exclusively by primes of the shape 6k + 1. Moreover, none
of the primes p1, . . . , pn divide Q. Thus Q is divisible by a new prime of the shape 6k − 1
not amongst p1, . . . , pn, contradicting our initial hypothesis. This completes the proof that
there are infinitely many primes of the shape 6k − 1.

4. [12 points] We call a positive integer n squarefull if, whenever p is a prime divisor of n,
then p2 is also a divisor of n. Show that when n is squarefull, there exist positive integers
a and b for which n = a2b3.

Solution: Suppose that n is a squarefull number, and that for each prime number p
dividing n, the largest power of p dividing n is prp . Then one has rp ≥ 2. If rp is even, we
put up = rp/2 and vp = 0. Otherwise, the integer rp is odd with rp ≥ 3, and we can put
vp = 1 and up = (rp−3)/2. In all cases, we now have rp = 2up+3vp, with up a non-negative
integer and vp = 0 or 1. Putting a =

∏
p|n p

up and b =
∏

p|n p
vp , we now have

n =
∏
p|n

prp =
(∏

p|n

pup

)2(∏
p|n

pvp
)3

= a2b3,

and the desired conclusion is now immediate.

5. [4+7+7=18 points] Throughout this question, the letter p denotes an odd prime number.

(a) State Fermat’s Little Theorem in a form applicable to all residues modulo p.

Solution: For all a ∈ Z, one has ap ≡ a (mod p).

(b) Show that the congruence

xp − 2x+ 2 ≡ 0 (mod p)

has precisely one solution modulo p, and determine that solution.

Solution: By Fermat’s Little theorem, for any integer x, one has

xp − 2x+ 2 ≡ x− 2x+ 2 = −x+ 2 (mod p).

Thus, the congruence in question has the solution given by x ≡ 2 (mod p), and no others.

(c) Let j be an integer with j ≥ 2. Determine the number of solutions of the congruence

xp − 2x+ 2 ≡ 0 (mod pj).

Justify your answer.

Solution: The congruence in question has only the solution x ≡ 2 (mod p) when j = 1.
Write f(t) = tp − 2t + 2. Then f ′(t) = ptp−1 − 2 and so, since p is odd, one has f ′(2) ≡
−2 6≡ 0 (mod p). Then p0‖f ′(2), and by Hensel’s Lemma, for every j ≥ 2, the solution
x = 2 of the congruence modulo p lifts uniquely to a solution modulo pj. Then there is
precisely one solution modulo pj to the congruence in question.

Continued...
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6. [4+7+7=18 points] (a) Give a formula for Euler’s function ϕ(n) explicit in terms of the
prime factorisation of n.

Solution: One has φ(n) = n
∏

p|n(1 − 1/p), where the product is taken over the distinct
prime divisors p of n.

(b) Suppose that p, q and r are distinct prime numbers, and put N = [p− 1, q − 1, r − 1].
Prove that whenever (a, pqr) = 1, one has aN ≡ 1 (mod pqr).

Solution: Since (p − 1)|N , say N = m(p − 1), and (a, p) = 1, it follows from Fermat’s
Little Theorem that aN = (ap−1)m ≡ 1 (mod p). Likewise, one has aN ≡ 1 (mod q) and
aN ≡ 1 (mod r). On noting that p, q and r are distinct primes, and therefore pairwise
coprime, it therefore follows from the Chinese Remainder Theorem that aN ≡ 1 (mod pqr).

(c) Let n be a natural number having the property that p = 6n + 1, q = 12n + 1 and
r = 18n+ 1 are all prime numbers. Prove that whenever (a, pqr) = 1, one has

apqr−1 ≡ 1 (mod pqr).

Solution: Observe that [p− 1, q − 1, r − 1] = [6n, 12n, 18n] = 36n, and

pqr − 1 = (6n+ 1)(12n+ 1)(18n+ 1)− 1 = 36n(36n2 + 11n+ 1).

Thus pqr − 1 is divisible by [p − 1, q − 1, r − 1], and we deduce from (b) that whenever
(a, pqr) = 1, one has apqr−1 ≡ 1 (mod pqr).

End of examination.
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