PURDUE UNIVERSITY

Department of Mathematics

INTRODUCTION TO NUMBER THEORY
 MA 49500 and MA 59500 - SOLUTIONS

2nd October 202350 minutes

This paper contains SIX questions.
All SIX answers will be used for assessment.
Calculators, textbooks, notes and cribsheets are not permitted in this examination.

1. $[4+4+4+4+4=20$ points $]$ Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
a. Let p be a prime number. Then for every integer a, one has $a^{p^{2}} \equiv a(\bmod p)$.

Solution: TRUE $\left(\right.$ Since $a^{p} \equiv a(\bmod p)$, one has $\left.a^{p^{2}} \equiv a^{p} \equiv a(\bmod p)\right)$.
b. The least common multiple of two non-zero integers a and b is the largest positive value of $a x+b y$, as x and y range over \mathbb{Z}.
Solution: FALSE (This is superficially similar to a true fact for greatest common divisors, but here the set of positive values is unbounded).
c. Let $c_{1}, c_{2}, m_{1}, m_{2}$ be integers with $1 \leq m_{1}<m_{2}$. Then the two congruences

$$
x \equiv c_{1}\left(\bmod m_{1}\right) \quad \text { and } \quad x \equiv c_{2}\left(\bmod m_{2}\right)
$$

do not have a simultaneous integer solution x unless $\left(m_{1}, m_{2}\right)=1$.
Solution: FALSE (Consider, for example, $m_{1}=2, m_{2}=4, c_{1}=c_{2}=0$, so that the two congruences in question are $x \equiv 0(\bmod 2)$ and $x \equiv 0(\bmod 4)$, with solution $x=0$, and yet $(2,4) \neq 1)$.
d. Let a and b be natural numbers. Then $a b$ divides $(a, b)[a, b]$.

Solution: TRUE (We proved that $(a, b)[a, b]=|a b|)$.
e. When p is prime and $d \in \mathbb{N}$, the congruence $x^{d} \equiv 1(\bmod p)$ always has d solutions.

Solution: FALSE (Consider for example $p=5, d=3$ so that $(p-1, d)=(4,3)=1$, whence $x^{d} \equiv 1(\bmod p)$ has a unique solution $)$.
2. $[5+5+5+5=20$ points $]$
(a) Let a and b be integers, not both 0 . Define what is meant by the greatest common divisor (a, b) of a and b.
Solution: The greatest common divisor of a and b is the largest (positive) integer d having the property that $d \mid a$ and $d \mid b$.
(b) Define what is meant by a multiplicative function.

Solution: A function $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if (i) f is not identically zero, and (ii) whenever $(m, n)=1$, then $f(m n)=f(m) f(n)$.
(c) Define the Euler totient (Euler's φ-function).

Solution: The number of elements in a reduced residue system is denoted by $\varphi(n)$. Thus $\varphi(n)=\operatorname{card}\{1 \leq a \leq n:(a, n)=1\}$.
(d) Let $m \in \mathbb{N}$. Define what is meant by a reduced residue system modulo m.

Solution: A reduced residue system modulo m is a set of integers r_{1}, \ldots, r_{n} satisfying (i) $\left(r_{i}, m\right)=1$ for $1 \leq i \leq n$, (ii) $r_{i} \not \equiv r_{j}(\bmod m)$ for $i \neq j$, and (iii) whenever $(x, m)=1$, then $x \equiv r_{i}(\bmod m)$ for some i with $1 \leq i \leq n$.

Cont...
3. $\left[6+6=12\right.$ points] (a) Let n be a natural number with $n>1$. Compute $\left(n^{2}-1, n^{3}+1\right)$.

Solution: One has $\left(n^{2}-1, n^{3}+1\right)=\left(n^{2}-1, n^{3}+1-n\left(n^{2}-1\right)\right)=\left(n^{2}-1, n+1\right)$, and $\left(n^{2}-1, n+1\right)=\left(n^{2}-1-(n-1)(n+1), n+1\right)=(0, n+1)=n+1$.
(b) Prove that there are infinitely many primes of the shape $6 k-1(k \in \mathbb{N})$.

Solution: Every prime other than 2 and 3 is of the shape $6 k \pm 1$. Suppose that there are only finitely many prime numbers of the shape $6 k-1$ with $k \geq 1$, say p_{1}, \ldots, p_{n}. Consider the integer $Q=6 p_{1} \ldots p_{n}-1$. The integer Q is odd, not divisible by 3 , and of the shape $6 k-1$, so cannot be divisible exclusively by primes of the shape $6 k+1$. Moreover, none of the primes p_{1}, \ldots, p_{n} divide Q. Thus Q is divisible by a new prime of the shape $6 k-1$ not amongst p_{1}, \ldots, p_{n}, contradicting our initial hypothesis. This completes the proof that there are infinitely many primes of the shape $6 k-1$.
4. [12 points] We call a positive integer n squarefull if, whenever p is a prime divisor of n, then p^{2} is also a divisor of n. Show that when n is squarefull, there exist positive integers a and b for which $n=a^{2} b^{3}$.

Solution: Suppose that n is a squarefull number, and that for each prime number p dividing n, the largest power of p dividing n is $p^{r_{p}}$. Then one has $r_{p} \geq 2$. If r_{p} is even, we put $u_{p}=r_{p} / 2$ and $v_{p}=0$. Otherwise, the integer r_{p} is odd with $r_{p} \geq 3$, and we can put $v_{p}=1$ and $u_{p}=\left(r_{p}-3\right) / 2$. In all cases, we now have $r_{p}=2 u_{p}+3 v_{p}$, with u_{p} a non-negative integer and $v_{p}=0$ or 1 . Putting $a=\prod_{p \mid n} p^{u_{p}}$ and $b=\prod_{p \mid n} p^{v_{p}}$, we now have

$$
n=\prod_{p \mid n} p^{r_{p}}=\left(\prod_{p \mid n} p^{u_{p}}\right)^{2}\left(\prod_{p \mid n} p^{v_{p}}\right)^{3}=a^{2} b^{3},
$$

and the desired conclusion is now immediate.
5. $[4+7+7=18$ points] Throughout this question, the letter p denotes an odd prime number.
(a) State Fermat's Little Theorem in a form applicable to all residues modulo p.

Solution: For all $a \in \mathbb{Z}$, one has $a^{p} \equiv a(\bmod p)$.
(b) Show that the congruence

$$
x^{p}-2 x+2 \equiv 0(\bmod p)
$$

has precisely one solution modulo p, and determine that solution.
Solution: By Fermat's Little theorem, for any integer x, one has

$$
x^{p}-2 x+2 \equiv x-2 x+2=-x+2(\bmod p) .
$$

Thus, the congruence in question has the solution given by $x \equiv 2(\bmod p)$, and no others.
(c) Let j be an integer with $j \geq 2$. Determine the number of solutions of the congruence

$$
x^{p}-2 x+2 \equiv 0\left(\bmod p^{j}\right) .
$$

Justify your answer.
Solution: The congruence in question has only the solution $x \equiv 2(\bmod p)$ when $j=1$. Write $f(t)=t^{p}-2 t+2$. Then $f^{\prime}(t)=p t^{p-1}-2$ and so, since p is odd, one has $f^{\prime}(2) \equiv$ $-2 \not \equiv 0(\bmod p)$. Then $p^{0} \| f^{\prime}(2)$, and by Hensel's Lemma, for every $j \geq 2$, the solution $x=2$ of the congruence modulo p lifts uniquely to a solution modulo p^{j}. Then there is precisely one solution modulo p^{j} to the congruence in question.
6. $[4+7+7=18$ points $]$ (a) Give a formula for Euler's function $\varphi(n)$ explicit in terms of the prime factorisation of n.
Solution: One has $\phi(n)=n \prod_{p \mid n}(1-1 / p)$, where the product is taken over the distinct prime divisors p of n.
(b) Suppose that p, q and r are distinct prime numbers, and put $N=[p-1, q-1, r-1]$. Prove that whenever $(a, p q r)=1$, one has $a^{N} \equiv 1(\bmod p q r)$.
Solution: Since $(p-1) \mid N$, say $N=m(p-1)$, and $(a, p)=1$, it follows from Fermat's Little Theorem that $a^{N}=\left(a^{p-1}\right)^{m} \equiv 1(\bmod p)$. Likewise, one has $a^{N} \equiv 1(\bmod q)$ and $a^{N} \equiv 1(\bmod r)$. On noting that p, q and r are distinct primes, and therefore pairwise coprime, it therefore follows from the Chinese Remainder Theorem that $a^{N} \equiv 1(\bmod p q r)$.
(c) Let n be a natural number having the property that $p=6 n+1, q=12 n+1$ and $r=18 n+1$ are all prime numbers. Prove that whenever $(a, p q r)=1$, one has

$$
a^{p q r-1} \equiv 1(\bmod p q r)
$$

Solution: Observe that $[p-1, q-1, r-1]=[6 n, 12 n, 18 n]=36 n$, and

$$
p q r-1=(6 n+1)(12 n+1)(18 n+1)-1=36 n\left(36 n^{2}+11 n+1\right) .
$$

Thus $p q r-1$ is divisible by $[p-1, q-1, r-1]$, and we deduce from (b) that whenever $(a, p q r)=1$, one has $a^{p q r-1} \equiv 1(\bmod p q r)$.

