PURDUE UNIVERSITY

Department of Mathematics

INTRODUCTION TO NUMBER THEORY

MA 49500 and MA 59500 - SOLUTIONS $\,$

 $2nd \ October \ 2023 \quad 50 \ minutes$

This paper contains **SIX** questions. All SIX answers will be used for assessment. Calculators, textbooks, notes and cribsheets are **not** permitted in this examination.

Do not turn over until instructed.

MA49500 and MA59500-2023

Cont...

1. [4+4+4+4=20 points] Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".

a. Let p be a prime number. Then for every integer a, one has $a^{p^2} \equiv a \pmod{p}$.

Solution: TRUE (Since $a^p \equiv a \pmod{p}$, one has $a^{p^2} \equiv a^p \equiv a \pmod{p}$).

b. The least common multiple of two non-zero integers a and b is the largest positive value of ax + by, as x and y range over \mathbb{Z} .

Solution: FALSE (This is superficially similar to a true fact for greatest common divisors, but here the set of positive values is unbounded).

c. Let c_1, c_2, m_1, m_2 be integers with $1 \le m_1 < m_2$. Then the two congruences

 $x \equiv c_1 \pmod{m_1}$ and $x \equiv c_2 \pmod{m_2}$

do not have a simultaneous integer solution x unless $(m_1, m_2) = 1$.

Solution: FALSE (Consider, for example, $m_1 = 2$, $m_2 = 4$, $c_1 = c_2 = 0$, so that the two congruences in question are $x \equiv 0 \pmod{2}$ and $x \equiv 0 \pmod{4}$, with solution x = 0, and yet $(2, 4) \neq 1$).

d. Let a and b be natural numbers. Then ab divides (a, b)[a, b].

Solution: TRUE (We proved that (a, b)[a, b] = |ab|).

e. When p is prime and $d \in \mathbb{N}$, the congruence $x^d \equiv 1 \pmod{p}$ always has d solutions.

Solution: FALSE (Consider for example p = 5, d = 3 so that (p - 1, d) = (4, 3) = 1, whence $x^d \equiv 1 \pmod{p}$ has a unique solution).

2. [5+5+5+5=20 points]

(a) Let a and b be integers, not both 0. Define what is meant by the greatest common divisor (a, b) of a and b.

Solution: The greatest common divisor of a and b is the largest (positive) integer d having the property that d|a and d|b.

(b) Define what is meant by a multiplicative function.

Solution: A function $f : \mathbb{N} \to \mathbb{C}$ is multiplicative if (i) f is not identically zero, and (ii) whenever (m, n) = 1, then f(mn) = f(m)f(n).

(c) Define the Euler totient (Euler's φ -function).

Solution: The number of elements in a reduced residue system is denoted by $\varphi(n)$. Thus $\varphi(n) = \operatorname{card}\{1 \le a \le n : (a, n) = 1\}.$

(d) Let $m \in \mathbb{N}$. Define what is meant by a reduced residue system modulo m.

Solution: A reduced residue system modulo m is a set of integers r_1, \ldots, r_n satisfying (i) $(r_i, m) = 1$ for $1 \le i \le n$, (ii) $r_i \not\equiv r_j \pmod{m}$ for $i \ne j$, and (iii) whenever (x, m) = 1, then $x \equiv r_i \pmod{m}$ for some i with $1 \le i \le n$.

Continued...

Cont...

- 3. [6+6=12 points] (a) Let *n* be a natural number with n > 1. Compute $(n^2 1, n^3 + 1)$. Solution: One has $(n^2 - 1, n^3 + 1) = (n^2 - 1, n^3 + 1 - n(n^2 - 1)) = (n^2 - 1, n + 1)$, and $(n^2 - 1, n + 1) = (n^2 - 1 - (n - 1)(n + 1), n + 1) = (0, n + 1) = n + 1$.
 - (b) Prove that there are infinitely many primes of the shape 6k 1 $(k \in \mathbb{N})$.

Solution: Every prime other than 2 and 3 is of the shape $6k \pm 1$. Suppose that there are only finitely many prime numbers of the shape 6k - 1 with $k \ge 1$, say p_1, \ldots, p_n . Consider the integer $Q = 6p_1 \ldots p_n - 1$. The integer Q is odd, not divisible by 3, and of the shape 6k - 1, so cannot be divisible exclusively by primes of the shape 6k + 1. Moreover, none of the primes p_1, \ldots, p_n divide Q. Thus Q is divisible by a new prime of the shape 6k - 1 not amongst p_1, \ldots, p_n , contradicting our initial hypothesis. This completes the proof that there are infinitely many primes of the shape 6k - 1.

4. [12 points] We call a positive integer n squarefull if, whenever p is a prime divisor of n, then p^2 is also a divisor of n. Show that when n is squarefull, there exist positive integers a and b for which $n = a^2b^3$.

Solution: Suppose that n is a squarefull number, and that for each prime number p dividing n, the largest power of p dividing n is p^{r_p} . Then one has $r_p \ge 2$. If r_p is even, we put $u_p = r_p/2$ and $v_p = 0$. Otherwise, the integer r_p is odd with $r_p \ge 3$, and we can put $v_p = 1$ and $u_p = (r_p - 3)/2$. In all cases, we now have $r_p = 2u_p + 3v_p$, with u_p a non-negative integer and $v_p = 0$ or 1. Putting $a = \prod_{p|n} p^{u_p}$ and $b = \prod_{p|n} p^{v_p}$, we now have

$$n = \prod_{p|n} p^{r_p} = \left(\prod_{p|n} p^{u_p}\right)^2 \left(\prod_{p|n} p^{v_p}\right)^3 = a^2 b^3,$$

and the desired conclusion is now immediate.

5. [4+7+7=18 points] Throughout this question, the letter p denotes an odd prime number.

(a) State Fermat's Little Theorem in a form applicable to all residues modulo p.

Solution: For all $a \in \mathbb{Z}$, one has $a^p \equiv a \pmod{p}$.

(b) Show that the congruence

$$x^p - 2x + 2 \equiv 0 \pmod{p}$$

has precisely one solution modulo p, and determine that solution.

Solution: By Fermat's Little theorem, for any integer x, one has

 $x^p - 2x + 2 \equiv x - 2x + 2 \equiv -x + 2 \pmod{p}.$

Thus, the congruence in question has the solution given by $x \equiv 2 \pmod{p}$, and no others.

(c) Let j be an integer with $j \ge 2$. Determine the number of solutions of the congruence

$$x^p - 2x + 2 \equiv 0 \pmod{p^j}.$$

Justify your answer.

Solution: The congruence in question has only the solution $x \equiv 2 \pmod{p}$ when j = 1. Write $f(t) = t^p - 2t + 2$. Then $f'(t) = pt^{p-1} - 2$ and so, since p is odd, one has $f'(2) \equiv -2 \not\equiv 0 \pmod{p}$. Then $p^0 || f'(2)$, and by Hensel's Lemma, for every $j \geq 2$, the solution x = 2 of the congruence modulo p lifts uniquely to a solution modulo p^j . Then there is precisely one solution modulo p^j to the congruence in question.

Continued...

Cont...

6. [4+7+7=18 points] (a) Give a formula for Euler's function $\varphi(n)$ explicit in terms of the prime factorisation of n.

Solution: One has $\phi(n) = n \prod_{p|n} (1 - 1/p)$, where the product is taken over the distinct prime divisors p of n.

(b) Suppose that p, q and r are distinct prime numbers, and put N = [p - 1, q - 1, r - 1]. Prove that whenever (a, pqr) = 1, one has $a^N \equiv 1 \pmod{pqr}$.

Solution: Since (p-1)|N, say N = m(p-1), and (a, p) = 1, it follows from Fermat's Little Theorem that $a^N = (a^{p-1})^m \equiv 1 \pmod{p}$. Likewise, one has $a^N \equiv 1 \pmod{q}$ and $a^N \equiv 1 \pmod{r}$. On noting that p, q and r are distinct primes, and therefore pairwise coprime, it therefore follows from the Chinese Remainder Theorem that $a^N \equiv 1 \pmod{pqr}$.

(c) Let n be a natural number having the property that p = 6n + 1, q = 12n + 1 and r = 18n + 1 are all prime numbers. Prove that whenever (a, pqr) = 1, one has

$$a^{pqr-1} \equiv 1 \pmod{pqr}.$$

Solution: Observe that [p - 1, q - 1, r - 1] = [6n, 12n, 18n] = 36n, and

$$pqr - 1 = (6n + 1)(12n + 1)(18n + 1) - 1 = 36n(36n^{2} + 11n + 1).$$

Thus pqr - 1 is divisible by [p - 1, q - 1, r - 1], and we deduce from (b) that whenever (a, pqr) = 1, one has $a^{pqr-1} \equiv 1 \pmod{pqr}$.