
NUMBER THEORY: HOMEWORK 2

DUE WEDNESDAY 6TH SEPTEMBER 2023

1.(i) Apply the Euclidean algorithm to determine (3992, 2023);

(ii) Find integers x and y such that 3992x + 2023y = (3992, 2023);

(iii) Find integers x, y, z such that 21x + 39y + 91z = 1.

2. Find positive integers a and b satisfying the equations (a, b) = 111 and
[a, b] = 999 simultaneously. Find all solutions.

3.(i) We call an integer squarefree if it is not divisible by any integer of the
form a2 with a > 1. Show that every positive integer n can be written uniquely
in the form n = ab where a is square-free and b is square.

(ii) We call a positive integer n squarefull if, whenever p is a prime divisor of
n, then p2 is also a divisor of n. Show that when n is squarefull, there exist
positive integers a and b for which n = a2b3.

4.(i) Prove that there are infinitely many prime numbers of the shape 6k + 5
for natural numbers k.

(ii) Is it possible that all large primes have the shape 10n± 1? More precisely,
does there exist a natural number p0 with the property that whenever p is a
prime number and p > p0, then p = 10n± 1 for some integer n? Justify your
answer.

[Hint: Consider carefully Euclid’s proof of the infinitude of primes.]

5∗ [Hard]. Let 1 < a1 < · · · < ak < 2n be integers not dividing each
other. Show that k 6 n. Prove that if k = n and m is the integer satisfying
3m < 2n < 3m+1 then a1 > 2m.

[Hint: Write each integer ai in the form (2b + 1)2c. In the second part write
a1 = (2m1 + 1)2r and investigate how many numbers ai must be of the form
(2m1 + 1)2c3d.]
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