NUMBER THEORY: HOMEWORK 4

TO BE HANDED IN BY WEDNESDAY 20TH SEPTEMBER 2023

1. (i) Find an integer x such that $3 x \equiv 2(\bmod 5), 2 x \equiv 3(\bmod 23)$, and $7 x \equiv 5(\bmod 3)$. Find an infinite sequence of integers with the same property.
(ii) Find an integer x such that $3 x \equiv 2(\bmod 7), 5 x \equiv 3(\bmod 19)$, and $7 x \equiv 5$ $(\bmod 9)$. Find an infinite sequence of integers with the same property.
(iii) Find all integers x satisfying $2 x \equiv 7(\bmod 15)$ and $5 x \equiv 17(\bmod 33)$.
2. (i) Find solutions of $x^{2} \equiv-1(\bmod 5)$ and $x^{2} \equiv-1(\bmod 13)$. Hence, applying the Chinese Remainder Theorem, obtain a solution of $x^{2} \equiv-1(\bmod 65)$.
(ii) How many solutions does $x^{2} \equiv-1(\bmod 65)$ possess?
3. (i) Let p be a prime number. By applying Fermat's Little Theorem, or otherwise, show that the congruence $x^{p}-x+1 \equiv 0(\bmod p)$ has no solution.
(ii) How many solutions does the congruence $x^{16}-x+3 \equiv 0(\bmod 40)$ possess? Explain your answer.
4. By considering the prime factorisation of the integer 1729, prove that whenever $(a, 1729)=1$, one has $a^{36} \equiv 1(\bmod 1729)$. Hence prove that $a^{1728} \equiv 1$ $(\bmod 1729)$ whenever $(a, 1729)=1$.
5. (i) Recall that if p is prime and $x^{2}+1 \equiv 0(\bmod p)$ is soluble, then $p=2$ or $p \equiv 1(\bmod 4)$. By modifying Euclid's proof that there are infinitely many primes, deduce that there are infinitely many primes of the form $4 k+1(k \in \mathbb{N})$.
(ii) Show that there are infinitely many primes of the form $8 k+5(k \in \mathbb{N})$.
©Trevor D. Wooley, Purdue University 2023. This material is copyright of Trevor D. Wooley at Purdue University unless explicitly stated otherwise. It is provided exclusively for educational purposes at Purdue University, and is to be downloaded or copied for your private study only.
