
NUMBER THEORY: HOMEWORK 5

TO BE HANDED IN BY WEDNESDAY 27TH SEPTEMBER 2023

1.Let f(x) = x2 − x throughout.

(a) Show that for every prime number p and every positive integer k, the
congruence f(x) ≡ 0 (mod pk) has precisely 2 solutions.

(b) Let m be a natural number, and let r denote the number of distinct prime
numbers dividing m. Show that the congruence f(x) ≡ 0 (mod m) has pre-
cisely 2r solutions.

2. (a) Prove that if p is prime, (a, p) = 1 and (n, p − 1) = 1, then xn ≡ a
(mod p) has exactly one solution.

(b) Show that when (n, p − 1) = d, then xn ≡ 1 (mod p) has precisely d
solutions.

3. (a) Find a solution of x4 + x+ 1 ≡ 0 (mod 33).

(b) Show that x2 + 6x+ 31 ≡ 0 (mod 121) has no solutions.

4. (a) Prove that if a belongs to h modulo a prime p (i.e. a has order h modulo
p), and if h is even, then ah/2 ≡ −1 (mod p).

(b) Suppose that p is odd and a belongs to h modulo pk for some integer k > 2.
Is it necessarily the case that ah/2 ≡ −1 (mod pk)?

5. Show that xp ≡ x (mod pj) has precisely p solutions modulo pj for every
prime power pj.
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