
NUMBER THEORY: HOMEWORK 7

TO BE HANDED IN BY WEDNESDAY 18TH OCTOBER 2023

1. Suppose that p > 3 is a prime number, and that g is a primitive root
modulo p.

(a) What can one say about the integer α if gα is a quadratic residue modulo
p?

(b) What can one say about the integer α if gα is a quadratic non-residue
modulo p?

(c) Hence find modulo p the sum, and the product, of all the distinct quadratic
residues modulo p.

2. Let p be an odd prime number.

(a) Show that when p 6= 17, one has(
2023

p

)
=

(
7

p

)
.

(b) Show that

(
−2

p

)
= 1 if and only if p ≡ 1 (mod 8) or p ≡ 3 (mod 8).

3. Let p be an odd prime number, and let a and b be integers with p - ab.
(a) Show that if a and b are both quadratic non-residues, then ab is a quadratic
residue.

(b) Deduce that the congruence

(x2 − a)(x2 − b)(x2 − ab) ≡ 0 (mod p)

always possesses a solution x modulo p.

4. The nth Mersenne number is defined to be Mn = 2n − 1.

(a) Prove that if Mn is prime, then n is prime.

(b) By making appropriate use of the quadratic residue symbol, show that if p
is a prime congruent to 3 modulo 4, and p′ = 2p+ 1 is also prime, then 2p ≡ 1
(mod p′).

(c) Deduce that 2251 − 1 is not a Mersenne prime.
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