
SOLUTIONS TO HOMEWORK 1

1. (i) When n > 2, one has n3− 8 = (n− 2)(n2 + 2n+ 4), and so n− 2 divides
n3 − 8, as required.

(ii) When n > 2, one has (n2 − 1, n4 + n) = (n2 − 1, (n2 − 1)(n2 + 1) + n + 1),
and thus (n2− 1, n4 + n) = ((n+ 1)(n− 1), n+ 1) = (n+ 1)(n− 1, 1) = n+ 1.

2. (i) One has 9|(10a+b) if and only if 9|(10a+b−9a), or equivalently 9|(a+b).
Write n = 10knk + 10k−1nk−1 + . . . + n0 in the ordinary base-10 expansion.
Using the above conclusion, one finds that 9|n if and only if

9|(10k−1nk + . . . + 10n2 + n1 + n0),

or equivalently 9|(10k−2nk + . . . + 10n3 + n2 + (n1 + n0)), and so on. Thus, by
induction, one sees that 9|n if and only if 9|(nk +nk−1 + . . .+n0), as required.

(ii) One has 33|(100a+ b) if and only if 33|(100a+ b− 3(33a)), or equivalently
33|(a + b). Write n = 100knk + 100k−1nk−1 + . . . + n0 in the ordinary base-
100 expansion. Using the above conclusion, one finds that 33|n if and only if
33|(100k−1nk + . . . + 100n2 + n1 + n0), or equivalently

33|(100k−2nk + . . . + 100n3 + n2 + (n1 + n0)),

and so on. Thus, one sees that 33|n if and only if 33|(nk + nk−1 + . . .+ n0), as
required.

(iii) One has 37|(1000a+b) if and only if 37|(1000a+b−27(37a)), or equivalently
37|(a + b). Write n = 1000knk + 1000k−1nk−1 + . . . + n0 in the ordinary base-
1000 expansion. Using the above conclusion, one finds that 37|n if and only if
37|(1000k−1nk + . . . + 1000n2 + n1 + n0), or equivalently

37|(1000k−2nk + . . . + 1000n3 + n2 + (n1 + n0)),

and so on. Thus, one sees that 37|n if and only if 37|(nk + nk−1 + . . .+ n0), as
required.

3. (i) Since 2 and 19 are coprime, one finds that n = 10m + n0 is divisible by
19 if and only if 2n = 20m+ 2n0 is divisible by 19. But the latter holds if and
only if 20m + 2n0 − 19m = m + 2n0 is divisible by 19. Thus 19|n if and only
if m + 2n0 is divisible by 19, as required.

(ii) Since 5 and 7 are coprime, one finds that n = 10m + n0 is divisible by 7
if and only if 5n = 50m + 5n0 is divisible by 7. But the latter holds if and
only if 50m+ 5n0− 7(7m) = m+ 5n0 is divisible by 7. Thus 7|n if and only if
m + 5n0 is divisible by 7, as required.

4. (i) One has (n!− 1, (n+ 1)!− 1) = (n!− 1, ((n+ 1)!− 1)− (n+ 1)(n!− 1)) =
(n! − 1, n). But (n! − 1, n) = (n! − 1 − n · (n − 1)!, n) = (−1, n) = 1, and so
(n!− 1, (n + 1)!− 1) = 1, as required.
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(ii) One has (n! + 1, (n + 1)! + 1) = (n! + 1, ((n + 1)! + 1)− (n + 1)(n! + 1)) =
(n! + 1,−n). But (n! − 1,−n) = (n! − 1 − n · (n − 1)!,−n) = (−1,−n) = 1,
and so (n! + 1, (n + 1)! + 1) = 1, as required.

5. If the k consecutive integers in question contain 0, then this conclusion is
trivial. Also, when all k integers are negative, then their product is equal to
(−1)k multiplied by the product of k consecutive positive integers, and thus
there is no loss of generality in restricting to the case of k consecutive positive
integers. Whenever k, n ∈ N satisfy k 6 n, one has

n(n− 1) · · · (n− k + 1)

k!
=

(
n

k

)
∈ N,

and hence k! divides n(n−1) · · · (n−k+1). Then the product of any k positive
integers is divisible by k!, and this completes the proof.
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