
SOLUTIONS TO HOMEWORK 11

1. (a) One has

[
√

5] = 2, 1/(
√

5− 2) =
√

5 + 2,

[
√

5 + 2] = 4, 1/((
√

5 + 2)− 4) = 1/(
√

5− 2) =
√

5 + 2,

and we obtain repetition. Thus
√

5 = [2; 4].

Also, one has

[
√

6] = 2, 1/(
√

6− 2) = (
√

6 + 2)/2,

[(
√

6 + 2)/2] = 2, 1/((
√

6 + 2)/2− 2) = 2/(
√

6− 2) =
√

6 + 2,

[
√

6 + 2] = 4, 1/((
√

6 + 2)− 4) = 1/(
√

6− 2) = (
√

6 + 2)/2,

and we obtain repetition. Thus
√

6 = [2; 2, 4].

(b) One has

[
√

54] = 7, 1/(
√

54− 7) = (
√

54 + 7)/5,

[(
√

54 + 7)/5] = 2, 1/((
√

54 + 7)/5− 2) = 5/(
√

54− 3) = (
√

54 + 3)/9,

[(
√

54 + 3)/9] = 1, 1/((
√

54 + 3)/9− 1) = 9/(
√

54− 6) = (
√

54 + 6)/2,

[(
√

54 + 6)/2] = 6, 1/((
√

54 + 6)/2− 6) = 2/(
√

54− 6) = (
√

54 + 6)/9,

[(
√

54 + 6)/9] = 1, 1/((
√

54 + 6)/9− 1) = 9/(
√

54− 3) = (
√

54 + 3)/5,

[(
√

54 + 3)/5] = 2, 1/((
√

54 + 3)/5− 2) = 5/(
√

54− 7) =
√

54 + 7,

[
√

54 + 7] = 14, 1/((
√

54 + 7)− 14) = 1/(
√

54− 7) = (
√

54 + 7)/5,

and we obtain repetition. Thus
√

54 = [7; 2, 1, 6, 1, 2, 14].

2. One has
[
√

69] = 8, 1/(
√

69− 8) = (
√

69 + 8)/5,

[(
√

69 + 8)/5] = 3, 1/((
√

69 + 8)/5− 3) = 5/(
√

69− 7) = (
√

69 + 7)/4,

[(
√

69 + 7)/4] = 3, 1/((
√

69 + 7)/4− 3) = 4/(
√

69− 5) = (
√

69 + 5)/11,

[(
√

69 + 5)/11] = 1, 1/((
√

69 + 5)/11− 1) = 11/(
√

69− 6) = (
√

69 + 6)/3,

[(
√

69 + 6)/3] = 4, 1/((
√

69 + 6)/3− 4) = 3/(
√

69− 6) = (
√

69 + 6)/11,

[(
√

69 + 6)/11] = 1, 1/((
√

69 + 6)/11− 1) = 11/(
√

69− 5) = (
√

69 + 5)/4,

[(
√

69 + 5)/4] = 3, 1/((
√

69 + 5)/4− 3) = 4/(
√

69− 7) = (
√

69 + 7)/5,

[(
√

69 + 7)/5] = 3, 1/((
√

69 + 7)/5− 3) = 5/(
√

69− 8) =
√

69 + 8,

[
√

69 + 8] = 16, 1/(
√

69− 8) = (
√

69 + 8)/5,

and we obtain repetition. Thus
√

69 = [8; 3, 3, 1, 4, 1, 3, 3, 16].

Also, one has

[(24−
√

15)/7] = 2, 1/((24−
√

15)/7−2) = 7/(10−
√

15) = 7(10+
√

15)/85,

[7(10+
√

15)/85] = 1, 1/(7(10+
√

15)/85−1) = 85/(−15+7
√

15) = (15+7
√

15)/6,
1
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[(15+7
√

15)/6] = 7, 1/((15+7
√

15)/6−7) = 6/(−27+7
√

15) = 27+7
√

15,

[27+7
√

15] = 54, 1/((27+7
√

15)−54) = 1/(−27+7
√

15) = (27+7
√

15)/6,

[(27+7
√

15)/6] = 9, 1/((27+7
√

15)/6−9) = 6/(−27+7
√

15) = 27+7
√

15,

and we obtain repetition. Thus (24−
√

15)/7 = [2; 1, 7, 54, 9].

3. Write θ =
∑∞

0 2023−n!. For each natural number j, write qj = 2023j! and

aj = 2023j!

j∑
n=0

2023−n!.

Then both aj and qj are natural numbers with (aj, qj) = 1, and

|θ − aj/qj| =
∞∑

n=j+1

2023−n! < 20231−(j+1)! < q−jj .

If θ were algebraic, then it would be algebraic of some degree d > 1. By
Liouville’s theorem, for some positive number c, one would have |θ−a/q| > c/qd

for every pair of natural numbers a and q with (a, q) = 1 and q large enough.
But the above upper bound contradicts this lower bound as soon as j > d and
j is large enough in terms of c. Hence θ is transcendental.

4. Write Θ =
∑∞

1 2−pn#. For each natural number j, write qj = 2pj# and

aj = 2pj#

j∑
n=1

2−pn#.

Then both aj and qj are natural numbers with (aj, qj) = 1, and

|Θ− aj/qj| =
∞∑

n=j+1

2−pn# < 21−pj+1# < q−jj .

Notice here that we use the trivial lower bound pj+1 > j + 1 to derive the
last of these inequalities. If Θ were algebraic, then it would be algebraic of
some degree d > 1. By Liouville’s theorem, for some positive number c, one
would have |Θ − a/q| > c/qd for every pair of natural numbers a and q with
(a, q) = 1 and q large enough. But the above upper bound contradicts this
lower bound as soon as j > d and j is large enough in terms of c. Hence Θ is
transcendental.
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