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1. (a) Since the equation x2−5y2 = 1 has the solution (x, y) = (9, 4), we know
that (x, y) = (92 + 5 · 42, 2 · 9 · 4) = (161, 72) also solves this equation.

(b) Suppose that x2−5y2 = 1 has just finitely many solutions, and let (x, y) be
the solution with x largest. Then (x2+5y2, 2xy) is a solution with x2+5y2 > x,
giving a contradiction. So the equation has infinitely many integral solutions.

(c) One can check that 52 − 5 · 22 = 25− 20 = 5, and so (u, v) = (5, 2) solves
u2 − 5v2 = 5. Suppose that (x, y) is a solution of x2 − 5y2 = 1. Consider the
real number (5 + 2

√
5)(x + y

√
5) = (5x + 10y) + (2x + 5y)

√
5. Motivated by

multiplication by the conjugate, one finds that

(5x + 10y)2 − 5(2x + 5y)2 = 5(x2 − 5y2) = 5.

Since from part (b) there are infinitely many solutions (x, y) of x2 − 5y2 = 1,
then there are infinitely many solutions (u, v) = (5x + 10y, 2x + 5y) of the
equation u2 − 5v2 = 5.

2. (a) Recall that
√

6 = [2; 2, 4]. We compute the convergents pn/qn to the
continued fraction expansion of

√
6, using the recurrence relations from class:

p0
q0

=
2

1
and p20 − 6q20 = 22 − 6 · 12 = −2,

p1
q1

=
2 · 2 + 1

2
and p21 − 6q21 = 52 − 6 · 22 = 1,

so the fundamental solution of x2 − 6y2 = 1 is (x, y) = (5, 2). Thus, every
solution (x, y) of x2 − 6y2 = 1 is given by x + y

√
6 = ±(5 + 2

√
6)n (n ∈ Z).

(b) We have
√

54 = [7; 2, 1, 6, 1, 2, 14]. We compute the convergents pn/qn to
the continued fraction expansion of

√
54, using recurrence relations from class:

p0
q0

=
7

1
and p20 − 54q20 = 72 − 54 · 12 = −5,

p1
q1

=
2 · 7 + 1

2
and p21 − 54q21 = 152 − 54 · 22 = 9,

p2
q2

=
1 · 15 + 7

1 · 2 + 1
and p22 − 54q22 = 222 − 54 · 32 = −2,

p3
q3

=
6 · 22 + 15

6 · 3 + 2
and p23 − 54q23 = 1472 − 54 · 202 = 9,

p4
q4

=
1 · 147 + 22

1 · 20 + 3
and p24 − 54q24 = 1692 − 54 · 232 = −5,

p5
q5

=
2 · 169 + 147

2 · 23 + 20
and p25 − 54q25 = 4852 − 54 · 662 = 1,

1
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so the fundamental solution of x2 − 54y2 = 1 is (x, y) = (485, 66). Thus, the
solutions (x, y) of x2 − 54y2 = 1 are given by x + y

√
54 = ±(485 + 66

√
54)n

(n ∈ Z).

3. We know that there are infinitely many integral solutions (x, y) to the Pell
equation x2 − dy2 = 1 with x > 1 and y > 1. In particular, we have (x, y) = 1

and x =
√

dy2 + 1 > y
√
d. Thus, since (y

√
d−x)(y

√
d+x) = −1, we see that

|y
√
d− x| = 1

|y
√
d + x|

<
1

2y
√
d
,

whence |
√
d − x/y| < 1/(2

√
dy2). Since there are infinitely many such pairs

(x, y), the desired conclusion follows.

4. Let (p, q) denote the solution of x2 − dy2 = 1 with p, q ∈ N and with p, q
smallest. Then the set of all solutions of x2 − dy2 = 1 is given by ±(Am, Bm)
with m ∈ Z, where Am, Bm are the integers determined from the relation
Am + Bm

√
d = (p + q

√
d)m. In particular, these solutions satisfy Am+1 > Am

for m ∈ N, and similarly Bm+1 > Bm. Also, one has

Am+1+Bm+1

√
d = (p+q

√
d)(Am+Bm

√
d) = (pAm+dqBm)+

√
d(qAm+pBm),

and

Am+2 + Bm+2

√
d = (p + q

√
d)2(Am + Bm

√
d)

= ((p2 + q2d)Am + 2dpqBm) +
√
d(2pqAm + (p2 + dq2)Bm).

Consequently,

Am+2 − 2pAm+1 = ((p2 + dq2)Am + 2pqdBm)− 2p(pAm + dqBm)

= (dq2 − p2)Am = −Am,

and

Bm+2 − 2pBm+1 = ((p2 + dq2)Bm + 2pqAm)− 2p(qAm + pBm)

= (dq2 − p2)Bm = −Bm.

So the sequence of positive solutions (xn, yn) of x2−dy2 = 1, written according
to increasing values of x or y, satisfies un+2 − 2pun+1 + un = 0 (u = x or y),
where p is the smallest positive integer such that p2 − dq2 = 1 is soluble with
q ∈ N.
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