SOLUTIONS TO HOMEWORK 2

1. (i) Use the Euclidean algorithm:

$$
\begin{aligned}
3992 & =2023 \cdot 1+1969 \\
2023 & =1969 \cdot 1+54 \\
1969 & =54 \cdot 36+25 \\
54 & =25 \cdot 2+4 \\
25 & =4 \cdot 6+1 \\
4 & =4 \cdot 1+0 .
\end{aligned}
$$

Then identifying the last non-zero remainder, we find that $(3992,2023)=1$.
(ii) Now we work backwards.

$$
\begin{aligned}
1 & =25-4 \cdot 6=25-(54-25 \cdot 2) \cdot 6=25 \cdot 13-54 \cdot 6 \\
& =(1969-54 \cdot 36) \cdot 13-54 \cdot 6=1969 \cdot 13-54 \cdot 474 \\
& =1969 \cdot 13-(2023-1969) \cdot 474=1969 \cdot 487-2023 \cdot 474 \\
& =(3992-2023) \cdot 487-2023 \cdot 474=3992 \cdot 487-2023 \cdot 961 .
\end{aligned}
$$

Then $1=3992 \cdot(487)+2023 \cdot(-961)$, and so $(x, y)=(487,-961)$ is a solution of the equation $3992 x+2023 y=1$.
(iii) If n is of the form $21 x+39 y$, then necessarily $3 \mid n$. We can solve $3 m+$ $91 z=1$ by using the Euclidean algorithm (or directly!): you may check that $3 \cdot(-30)+91 \cdot 1=1$. Now we solve $21 x+39 y=3 \cdot(-30)$. By the Euclidean algorithm (or otherwise!), we may find the solution $(x, y)=(2,-1)$ to the equation $21 x+39 y=3$, and hence $21 \cdot 2 \cdot(-30)+39 \cdot(-1) \cdot(-30)=3 \cdot(-30)$. So $21 \cdot(-60)+39 \cdot 30+91 \cdot 1=1$, and a suitable solution is $(x, y, z)=(-60,30,1)$
2. Since $(a, b)=111$, one has $111 \mid a$ and $111 \mid b$, say $a=111 A$ and $b=111 B$. Then $(A, B)=1$ and $[111 A, 111 B]=999$, whence $[A, B]=9$ and $A B=$ $(A, B)[A, B]=9$. The latter implies that $A \mid 9$ and $B \mid 9$, so that $A, B \in\{1,3,9\}$. But $(A, B)=1$ and $A B=9$, so $\{A, B\}=\{1,9\}$. Then (a, b) must be one of $(111,999)$ and $(999,111)$, both of which satisfy $(a, b)=111$ and $[a, b]=999$.
3. (i) The prime factorisation of a positive integer may be written uniquely in the form $n=\prod_{p \mid n} p^{r(p)}$, with the $r(p)$ positive integers. By the division algorithm, there are unique integers $c(p)$ and $d(p)$ with $r(p)=2 c(p)+d(p)$ and $d(p)=0$ or 1 , for each p. But then n can be written uniquely in the form $n=a b$, where $b=\left(\prod_{p \mid n} p^{c(p)}\right)^{2}$ and $a=\prod_{p \mid n} p^{d(p)}$. The proof is completed by noting that a is squarefree, for otherwise, if $m^{2} \mid a$ with $m>1$, then $q^{2} \mid a$ with q a prime divisor of m, contradicting the prime factorisation of a.
(ii) Suppose that n is a squarefull number, and that for each prime number p dividing n, the largest power of p dividing n is $p^{r_{p}}$. Then one has $r_{p} \geqslant 2$, so
that for some $k_{p} \in \mathbb{Z}_{\geqslant 0}$, one has $r_{p}=6 k_{p}+s_{p}$ for some $s_{p} \in\{2,3,4,5,6,7\}$. Each element in the latter set may be written in the form $s_{p}=2 u_{p}+3 v_{p}$, with u_{p} a non-negative integer and $v_{p}=0$ or 1 . Then

$$
n=\prod_{p \mid n} p^{r_{p}}=\left(\prod_{p \mid n} p^{3 k_{p}+u_{p}}\right)^{2}\left(\prod_{p \mid n} p^{v_{p}}\right)^{3}
$$

and the desired conclusion is now immediate.
4. (i) All primes exceeding 3 have the form $6 k+1$ or $6 k+5$. Suppose that there are just finitely many prime numbers of the shape $6 k+5$. Let the set of all such primes exceeding 3 be $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, and put $Q=6 p_{1} \ldots p_{n}-1$. Plainly, one cannot have $p_{i} \mid Q$ for any i with $1 \leqslant i \leqslant n$. Further, neither 2 nor 3 divides Q. If the only primes dividing Q were of the form $6 k+1$, then Q would itself be of the form $6 k+1$, which is not the case. So Q must have a prime factor of the form $6 k+5$ that is not one of p_{1}, \ldots, p_{n}. This contradicts our assumption that the latter are the only primes of such shape. So there are infinitely many primes not of the shape $6 k+5$.
(ii) All primes exceeding 5 have the form $10 k \pm a$ with $a=1$ or 3 . Suppose that all large enough primes are of the form $10 k \pm 1$, so that there are only finitely many of the form $10 k \pm 3$. Let the set of all such primes exceeding 3 be $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, and put $Q=10 p_{1} \ldots p_{n}-3$. Plainly, one cannot have $p_{i} \mid Q$ for any i with $1 \leqslant i \leqslant n$. Further, neither 2 nor 5 divides Q. If the only primes dividing Q were of the form $10 k \pm 1$, then Q would itself be of the form $10 k \pm 1$, which is not the case. So Q must have a prime factor of the form $10 k \pm 3$ that is not one of p_{1}, \ldots, p_{n}. This contradicts our assumption that the latter are the only primes of such shape. So there are infinitely many primes not of the shape $10 k \pm 1$, and the answer is "no!".
5^{*} [Hard]. Write $a_{i}=\left(2 b_{i}+1\right) 2^{c_{i}}$, with $b_{i}, c_{i} \in \mathbb{Z}_{\geqslant 0}$, for $1 \leqslant i \leqslant k$. Then $1 \leqslant 2 b_{i}+1<2 n$ for each i, and hence $0 \leqslant b_{i} \leqslant n-1$ for each i. Now if for any $i<j$ we have $b_{i}=b_{j}$, then since $a_{i}<a_{j}$, we have $c_{i}<c_{j}$, and so $a_{i} \mid a_{j}$, which is a contradiction. So $b_{i} \neq b_{j}$ for $i \neq j$. Then since there are at most n distinct choices for b_{i}, there are at most n elements a_{i}, that is, one has $k \leqslant n$.

Suppose that $k=n$, and that m is the integer satisfying $3^{m}<2 n<3^{m+1}$. By the preceeding argument, we see that for each integer j with $0 \leqslant j \leqslant n-1$, there is an i with $b_{i}=j$. Let d be maximal with $\left(2 b_{1}+1\right) 3^{d}<2 n$, and consider the indices $1<i_{1}<i_{2}<\cdots<i_{d}$ with $2 b_{i_{r}}+1=3^{d_{i_{r}}}\left(2 b_{1}+1\right)$, for some integer $d_{i_{r}}$. Now, if $c_{i_{r}}<c_{i_{r+1}}$, then $a_{i} \mid a_{j}$. Then we have $c_{1}>c_{i_{1}}>\cdots>c_{i_{d}}$, and in particular, $c_{1} \geqslant d$. Therefore, since $\left(2 b_{1}+1\right) 3^{d+1}>2 n$, we have $3^{m} \leqslant 2 n-1 \leqslant\left(2 b_{1}+1\right) 3^{d+1}-1$. So $2 b_{1}+1 \geqslant 3^{m-d-1}+3^{-d-1}$, that is, $2 b_{1}+1 \geqslant 3^{m-d-1}+1$. Now for each positive integer k, one has $3^{k-2}+1 \geqslant 2^{k-1}$, and so $a_{1}=\left(2 b_{1}+1\right) 2^{c_{1}} \geqslant 2^{m-d} 2^{d}=2^{m}$.
©Trevor D. Wooley, Purdue University 2023. This material is copyright of Trevor D. Wooley at Purdue University unless explicitly stated otherwise. It is provided exclusively for educational purposes at Purdue University, and is to be downloaded or copied for your private study only.

