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1. (i) Note that φ(1000) = φ(23)φ(53) = 22 · 52 · 4 = 400 (one can also see this
directly by computing the number of odd integers a with 1 6 a 6 1000 not
divisible by 5). Then by Euler’s theorem, on noting that (79, 1000) = 1, one
finds that 797201 = (79400)18 · 79 ≡ 79 (mod 1000). Thus the last three digits
of 797201 must be 079.

Observe next that 52 ≡ 25 (mod 100), and 5(25) ≡ 25 (mod 100), so that
an obvious induction yields the conclusion that 5k ≡ 25 (mod 100) for each
k > 2. Consequently, the last two digits of 52023 are 25.

(ii) When n > 0, one has

22n+5 − 33n+2 ≡ 32 · 4n − 9 · 27n ≡ 32 · 4n − 9 · 4n ≡ 23 · 4n ≡ 0 (mod 23).

Thus 23 divides 22n+5 − 33n+2 for each n > 0.

2. (i) Since 03 ≡ 0 (mod 7) and (±1)3 ≡ (±2)3 ≡ (±3)3 ≡ ±1 (mod 7), the
congruence x3 ≡ 2 (mod 7) is insoluble. Next, if x3 − 2y3 ≡ 0 (mod 7) is
soluble with y 6≡ 0 (mod 7), then y−1 (mod 7) exists, and so there exists a
residue z = xy−1 (mod 7) with z3 ≡ 2 (mod 7). This yields a contradiction
which shows that the only solution of x3 ≡ 2y3 (mod 7) is the trivial solution
x ≡ y ≡ 0 (mod 7). But if x3 − 2y3 = 0 were to have a non-zero integral
solution, then by homogeneity one may suppose that a solution exists with
(x, y) = 1, and in particular with x 6≡ 0 (mod 7) or y 6≡ 0 (mod 7). This
contradicts our earlier deduction, whence the equation x3 − 2y3 = 0 has no
solution in rational integers except (x, y) = (0, 0).

Suppose now that 3
√

2 ∈ Q. Then there exist a, b ∈ Z with b > 0 and
a/b = 3

√
2, and a3−2b3 = 0 is soluble in integers (a, b) 6= (0, 0). This contradicts

the conclusion of the previous paragraph, and thus 3
√

2 is irrational.

(ii) Suppose that x3 − 2y3 + 7z3 = 0 has a solution in integers other than
(x, y, z) = (0, 0, 0). By homogeneity we may suppose that one at least of x, y
and z is not divisible by 7. But this equation is soluble only when x3 ≡ 2y3

(mod 7), and this congruence has only the solution x ≡ y ≡ 0 (mod 7). Thus
7 - z. Put x1 = x/7 and y1 = y/7, so that x1 and y1 are integers. Then making
a substitution and dividing through by 7, we obtain z3 + 7(x31 − 2y31) = 0.
Then 7|z, contradicting our earlier deduction. This contradiction shows that
the above equation possesses only the trivial solution.

3. (i) One has (n, n+ 1) = 1, and hence any prime divisor π of n+ 1 does not
divide n. The desired conclusion follows on noting that π 6 n+ 1.

(ii) By the binomial theorem, for each natural number n one has

qn > 2n = (1 + 1)n >

(
n

1

)
+ 1 = n+ 1.
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(iii) Suppose that p is the least prime not dividing n, and write p − 1 =
πa1
1 . . . πam

m , where π1 < . . . < πm are prime numbers and ai ∈ N. We must
have πi|n for each i, and moreover parts (ii) and (i), respectively, show that
πn
i > n + 1 > p. In particular, it follows that ai 6 n for each i, and hence
πa1
1 . . . πam

m |(π1 . . . πm)n. Since also π1 . . . πm|n, it follows that πa1
1 . . . πam

m |nn,
whence (p− 1)|nn.

(iv) Suppose that π is a prime number dividing n. Then since (n, nnn−1) = 1,
we see that π does not divide nnn − 1. Then the only prime divisors of nnn − 1
do not divide n. Let p be the least prime not dividing n. From part (iii) we
have (p − 1)|nn, say nn = l(p − 1). Then by Fermat’s Little Theorem, since
we have (n, p) = 1, one finds that nnn − 1 = (np−1)l − 1 ≡ 0 (mod p), whence
p|(nnn − 1). Thus, the least prime not dividing n is the smallest prime divisor
of nnn − 1.

(v) Now let pk be the k-th smallest prime, and put n = p1p2 . . . pk. The
smallest prime number not dividing n is pk+1, and by part (iv) one sees that
this is the smallest prime divisor of nnn − 1.
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