SOLUTIONS TO HOMEWORK 4

1. (i) The integers 5,23 and 3 are pairwise coprime and $5 \cdot 23 \cdot 3=345$. If $3 x \equiv 2(\bmod 5), 2 x \equiv 3(\bmod 23)$ and $7 x \equiv 5(\bmod 3)$, then $x \equiv 4(\bmod 5)$, $x \equiv 13(\bmod 23)$ and $x \equiv 2(\bmod 3)$. We seek solutions to the congruences

$$
(23 \cdot 3) y_{1} \equiv 1(\bmod 5), \quad(3 \cdot 5) y_{2} \equiv 1(\bmod 23), \quad(5 \cdot 23) y_{3} \equiv 1(\bmod 3)
$$

so that $4 y_{1} \equiv 1(\bmod 5), 15 y_{2} \equiv 1(\bmod 23), y_{3} \equiv 1(\bmod 3)$. We therefore deduce that $y_{1} \equiv-1(\bmod 5), y_{2} \equiv-3(\bmod 23), y_{3} \equiv 1(\bmod 3)$. Thus, by the Chinese Remainder Theorem, the required solution is
$x \equiv(23 \cdot 3) \cdot(-1) \cdot 4+(3 \cdot 5) \cdot(-3) \cdot 13+(5 \cdot 23) \cdot 1 \cdot 2=-631 \equiv 59(\bmod 345)$.
So a suitable integer is 59 , and any integer of the form $59+345 k(k \in \mathbb{Z})$, satisfies the same property.
(ii) The integers 7,19 and 9 are pairwise coprime and $7 \cdot 19 \cdot 9=1197$. If $3 x \equiv 2(\bmod 7), 5 x \equiv 3(\bmod 19)$ and $7 x \equiv 5(\bmod 9)$, then $x \equiv 3(\bmod 7)$, $x \equiv-7(\bmod 19)$ and $x \equiv 2(\bmod 9)$. We seek solutions to the congruences

$$
(19 \cdot 9) y_{1} \equiv 1(\bmod 7), \quad(7 \cdot 9) y_{2} \equiv 1(\bmod 19), \quad(7 \cdot 19) y_{3} \equiv 1(\bmod 9)
$$

so that $3 y_{1} \equiv 1(\bmod 7), 6 y_{2} \equiv 1(\bmod 19), 7 y_{3} \equiv 1(\bmod 9)$. We therefore deduce that $y_{1} \equiv 5(\bmod 7), y_{2} \equiv-3(\bmod 19), y_{3} \equiv 4(\bmod 9)$. Thus, by the Chinese Remainder Theorem, the required solution is

$$
x \equiv(19 \cdot 9) \cdot 5 \cdot 3+(7 \cdot 9) \cdot(-3) \cdot(-7)+(7 \cdot 19) \cdot 4 \cdot 2 \equiv 164 \quad(\bmod 1197)
$$

So a suitable integer is 164 , and any integer of the form $164+1197 k(k \in \mathbb{Z})$, satisfies the same property.
(iii) If the integer x satisfies $2 x \equiv 7(\bmod 15)$ and $5 x \equiv 17(\bmod 33)$, then in particular we have $2 x \equiv 7(\bmod 3)$ and $5 x \equiv 17(\bmod 3)$, whence $1 \equiv 2 x \equiv 2$ $(\bmod 3)$, leading to a contradiction. Then there are no solutions to this pair of simultaneous congruences.
2. (i) By inspection (or using the theorem from class that $((p-1) / 2)!^{2} \equiv$ $-1(\bmod p)$ when $p \equiv 1(\bmod 4))$, one finds that $2^{2} \equiv-1(\bmod 5)$ and $5^{2} \equiv-1(\bmod 13)$. It therefore follows that whenever $x \equiv 2(\bmod 5)$ and $x \equiv 5(\bmod 13)$, then $x^{2} \equiv-1(\bmod 65)$. But a solution of the congruence $13 y_{1} \equiv 1(\bmod 5)$ is given by $y_{1}=2$, and a solution of the congruence $5 y_{2} \equiv 1(\bmod 13)$ is given by $y_{2}=8$. Then since $65=5 \cdot 13$, it follows from the Chinese Remainder Theorem that a solution of the desired type is

$$
x=13 \cdot 2 \cdot 2+5 \cdot 8 \cdot 5=252 \equiv-8(\bmod 65)
$$

(ii) The congruence $x^{2} \equiv-1(\bmod 5)$ has the 2 solutions $x \equiv \pm 2(\bmod 5)$, and the congruence $x^{2} \equiv-1(\bmod 13)$ has the 2 solutions $x \equiv \pm 5(\bmod 13)$. Then, by the Chinese Remainder Theorem, the congruence $x^{2} \equiv-1(\bmod 65)$ has $2 \cdot 2=4$ solutions modulo 65 .
3. (i) By Fermat's Little Theorem, for all integers a one has $a^{p} \equiv a(\bmod p)$, and hence $a^{p}-a+1 \equiv 1(\bmod p)$. Thus we see that $x^{p}-x+1 \equiv 0(\bmod p)$ has no integral solution.
(ii) If $(x, 40)=d$, then $d \mid\left(x^{16}-x\right)$. Consequently, if $x^{16}-x+3 \equiv 0(\bmod 40)$, we see that $x^{16}-x+3 \equiv 0(\bmod d)$, and hence $d \mid 3$. But $d \mid 40$ and $(40,3)=1$, and so $d=1$. Observe next that $\varphi(40)=\varphi(8) \varphi(5)=4 \cdot 4=16$. Thus, when $(a, 40)=1$, it follows from Euler's theorem that $a^{16} \equiv 1(\bmod 40)$. In such circumstances, it follows that $a^{16}-a+3 \equiv 4-a(\bmod 40)$. Then if $(x, 40)=1$, we have $x^{16}-x+3 \equiv 0(\bmod 40)$ if and only if $x \equiv 4(\bmod 40)$, yet $(4,40) \neq 1$, so we arrrive at a contradiction. Hence, the equation $x^{16}-x+3 \equiv 0(\bmod 40)$ has no solutions.
4. One has $1729=7 \cdot 13 \cdot 19$. By Fermat's Little Theorem, whenever $(a, 1729)=$ 1 , one has $a^{6} \equiv 1(\bmod 7)$ because $(a, 7)=1$, and $a^{12} \equiv 1(\bmod 13)$ because $(a, 13)=1$, and $a^{18} \equiv 1(\bmod 19)$ because $(a, 19)=1$. Hence, for all integers a with $(a, 1729)=1$ one has

$$
\begin{aligned}
& a^{1728}=\left(a^{6}\right)^{288} \equiv 1 \quad(\bmod 7), \\
& a^{1728}=\left(a^{12}\right)^{144} \equiv 1 \quad(\bmod 13), \\
& a^{1728}=\left(a^{18}\right)^{96} \equiv 1 \quad(\bmod 19) .
\end{aligned}
$$

Thus we conclude that $a^{1728} \equiv 1(\bmod 1729)$, since $1729=7 \cdot 13 \cdot 19$.
5. (i) Suppose next that there are only finitely many primes of the shape $4 k+1$, say p_{1}, \ldots, p_{n}. Let $P=2 p_{1} p_{2} \cdots p_{n}$, and put $Q=P^{2}+1$. Then Q is odd, and if $p \mid Q$, then $x^{2}+1 \equiv 0(\bmod p)$ has the solution $x=P$. Then the prime divisors of Q are congruent to 1 modulo 4 . By construction, one has $\left(Q, p_{i}\right)=\left(P^{2}+1, p_{i}\right)=1$ for each i, because $p_{i} \mid P$. Then none of the finite set of primes congruent to 1 modulo 4 divide Q. We have arrived at a contradiction, and this proves that there are infinitely many primes of the shape $4 k+1$.
(ii) Suppose that there are only finitely many primes of the shape $8 k+5$, say p_{1}, \ldots, p_{n}. Let $P=p_{1} p_{2} \ldots p_{n}$, and put $Q=(2 P)^{2}+1$. Then Q is odd, and if $p \mid Q$, then $x^{2}+1 \equiv 0(\bmod p)$ has the solution $x=2 P$. Then the prime divisors of Q are congruent to 1 modulo 4 . Since P is odd and $2 \nmid P$, one has $P^{2} \equiv 1(\bmod 8)$. Thus $4 P^{2}+1 \equiv 5(\bmod 8)$, and hence Q is divisible by some prime π not congruent to 1 modulo 8 . But the primes dividing Q are congruent to 1 modulo 4 , so the only possibility is that $\pi \equiv 5(\bmod 8)$. Moreover, one has $\left(Q, p_{i}\right)=\left(4 P^{2}+1, p_{i}\right)=1$ for each i, because $p_{i} \mid P$. Then none of the finite set of primes congruent to 5 modulo 8 divide Q. This gives a contradiction, proving that there are infinitely many primes of the shape $8 k+5$.
© Trevor D. Wooley, Purdue University 2023. This material is copyright of Trevor D. Wooley at Purdue University unless explicitly stated otherwise. It is provided exclusively for educational purposes at Purdue University, and is to be downloaded or copied for your private study only.

