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1. (i) The integers 5, 23 and 3 are pairwise coprime and 5 · 23 · 3 = 345. If
3x ≡ 2 (mod 5), 2x ≡ 3 (mod 23) and 7x ≡ 5 (mod 3), then x ≡ 4 (mod 5),
x ≡ 13 (mod 23) and x ≡ 2 (mod 3). We seek solutions to the congruences

(23 · 3)y1 ≡ 1 (mod 5), (3 · 5)y2 ≡ 1 (mod 23), (5 · 23)y3 ≡ 1 (mod 3),

so that 4y1 ≡ 1 (mod 5), 15y2 ≡ 1 (mod 23), y3 ≡ 1 (mod 3). We therefore
deduce that y1 ≡ −1 (mod 5), y2 ≡ −3 (mod 23), y3 ≡ 1 (mod 3). Thus, by
the Chinese Remainder Theorem, the required solution is

x ≡ (23 · 3) · (−1) · 4 + (3 · 5) · (−3) · 13 + (5 · 23) · 1 · 2 = −631 ≡ 59 (mod 345).

So a suitable integer is 59, and any integer of the form 59 + 345k (k ∈ Z),
satisfies the same property.

(ii) The integers 7, 19 and 9 are pairwise coprime and 7 · 19 · 9 = 1197. If
3x ≡ 2 (mod 7), 5x ≡ 3 (mod 19) and 7x ≡ 5 (mod 9), then x ≡ 3 (mod 7),
x ≡ −7 (mod 19) and x ≡ 2 (mod 9). We seek solutions to the congruences

(19 · 9)y1 ≡ 1 (mod 7), (7 · 9)y2 ≡ 1 (mod 19), (7 · 19)y3 ≡ 1 (mod 9),

so that 3y1 ≡ 1 (mod 7), 6y2 ≡ 1 (mod 19), 7y3 ≡ 1 (mod 9). We therefore
deduce that y1 ≡ 5 (mod 7), y2 ≡ −3 (mod 19), y3 ≡ 4 (mod 9). Thus, by
the Chinese Remainder Theorem, the required solution is

x ≡ (19 · 9) · 5 · 3 + (7 · 9) · (−3) · (−7) + (7 · 19) · 4 · 2 ≡ 164 (mod 1197).

So a suitable integer is 164, and any integer of the form 164 + 1197k (k ∈ Z),
satisfies the same property.

(iii) If the integer x satisfies 2x ≡ 7 (mod 15) and 5x ≡ 17 (mod 33), then in
particular we have 2x ≡ 7 (mod 3) and 5x ≡ 17 (mod 3), whence 1 ≡ 2x ≡ 2
(mod 3), leading to a contradiction. Then there are no solutions to this pair
of simultaneous congruences.

2. (i) By inspection (or using the theorem from class that ((p − 1)/2)!2 ≡
−1 (mod p) when p ≡ 1 (mod 4)), one finds that 22 ≡ −1 (mod 5) and
52 ≡ −1 (mod 13). It therefore follows that whenever x ≡ 2 (mod 5) and
x ≡ 5 (mod 13), then x2 ≡ −1 (mod 65). But a solution of the congru-
ence 13y1 ≡ 1 (mod 5) is given by y1 = 2, and a solution of the congruence
5y2 ≡ 1 (mod 13) is given by y2 = 8. Then since 65 = 5 · 13, it follows from
the Chinese Remainder Theorem that a solution of the desired type is

x = 13 · 2 · 2 + 5 · 8 · 5 = 252 ≡ −8 (mod 65).

(ii) The congruence x2 ≡ −1 (mod 5) has the 2 solutions x ≡ ±2 (mod 5),
and the congruence x2 ≡ −1 (mod 13) has the 2 solutions x ≡ ±5 (mod 13).
Then, by the Chinese Remainder Theorem, the congruence x2 ≡ −1 (mod 65)
has 2 · 2 = 4 solutions modulo 65.
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3. (i) By Fermat’s Little Theorem, for all integers a one has ap ≡ a (mod p),
and hence ap − a + 1 ≡ 1 (mod p). Thus we see that xp − x + 1 ≡ 0 (mod p)
has no integral solution.

(ii) If (x, 40) = d, then d|(x16−x). Consequently, if x16−x+ 3 ≡ 0 (mod 40),
we see that x16− x+ 3 ≡ 0 (mod d), and hence d|3. But d|40 and (40, 3) = 1,
and so d = 1. Observe next that ϕ(40) = ϕ(8)ϕ(5) = 4 · 4 = 16. Thus, when
(a, 40) = 1, it follows from Euler’s theorem that a16 ≡ 1 (mod 40). In such
circumstances, it follows that a16−a+3 ≡ 4−a (mod 40). Then if (x, 40) = 1,
we have x16−x+3 ≡ 0 (mod 40) if and only if x ≡ 4 (mod 40), yet (4, 40) 6= 1,
so we arrrive at a contradiction. Hence, the equation x16−x+3 ≡ 0 (mod 40)
has no solutions.

4. One has 1729 = 7·13·19. By Fermat’s Little Theorem, whenever (a, 1729) =
1, one has a6 ≡ 1 (mod 7) because (a, 7) = 1, and a12 ≡ 1 (mod 13) because
(a, 13) = 1, and a18 ≡ 1 (mod 19) because (a, 19) = 1. Hence, for all integers
a with (a, 1729) = 1 one has

a1728 = (a6)288 ≡ 1 (mod 7),

a1728 = (a12)144 ≡ 1 (mod 13),

a1728 = (a18)96 ≡ 1 (mod 19).

Thus we conclude that a1728 ≡ 1 (mod 1729), since 1729 = 7 · 13 · 19.

5. (i) Suppose next that there are only finitely many primes of the shape 4k+1,
say p1, . . . , pn. Let P = 2p1p2 · · · pn, and put Q = P 2 + 1. Then Q is odd,
and if p|Q, then x2 + 1 ≡ 0 (mod p) has the solution x = P . Then the
prime divisors of Q are congruent to 1 modulo 4. By construction, one has
(Q, pi) = (P 2+1, pi) = 1 for each i, because pi|P . Then none of the finite set of
primes congruent to 1 modulo 4 divide Q. We have arrived at a contradiction,
and this proves that there are infinitely many primes of the shape 4k + 1.

(ii) Suppose that there are only finitely many primes of the shape 8k + 5, say
p1, . . . , pn. Let P = p1p2 . . . pn, and put Q = (2P )2 + 1. Then Q is odd, and
if p|Q, then x2 + 1 ≡ 0 (mod p) has the solution x = 2P . Then the prime
divisors of Q are congruent to 1 modulo 4. Since P is odd and 2 - P , one has
P 2 ≡ 1 (mod 8). Thus 4P 2 + 1 ≡ 5 (mod 8), and hence Q is divisible by some
prime π not congruent to 1 modulo 8. But the primes dividing Q are congruent
to 1 modulo 4, so the only possibility is that π ≡ 5 (mod 8). Moreover, one
has (Q, pi) = (4P 2 +1, pi) = 1 for each i, because pi|P . Then none of the finite
set of primes congruent to 5 modulo 8 divide Q. This gives a contradiction,
proving that there are infinitely many primes of the shape 8k + 5.
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