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1. (a) If x2 − x ≡ 0 (mod pk), then pk|x(x− 1). But (x, x− 1) = (x,−1) = 1,
so the latter implies that pk|x or pk|(x− 1), whence x ≡ 0 (mod pk) or x ≡ 1
(mod pk). Plainly, both of these residue classes yield a solution, so we find
that the congruence f(x) ≡ 0 (mod pk) has precisely two solutions for each k.

(b) Let N(m) denote the number of solutions of the congruence f(x) ≡ 0
(mod m). Then N(m) is a multiplicative function of m satisfying N(pk) = 2
for each prime power pk. Thus, writing r for the number of different prime
numbers dividing m,we obtain

N(m) =
∏
pk‖m

N(pk) =
∏
p|m

2 = 2r.

2. (a) The Euclidean Algorithm supplies integers r and s with r(p− 1) + sn =
(n, p − 1) = 1, so that (xn)s(xp−1)r = xns+r(p−1) ≡ x (mod p). If xn ≡ a
(mod p), then as a consequence of Fermat’s Little Theorem, one obtains x ≡ as

(mod p), and so we conclude that the congruence has precisely one solution.

(b) Suppose that (n, p− 1) = d, and that xn ≡ 1 (mod p). By the Euclidean
algorithm, there exist integers u and v with nu+(p−1)v = (n, p−1) = d. Then
by Fermat’s Little Theorem, one has xd ≡ (xn)u(xp−1)v ≡ 1 (mod p). We saw
in class that when d|(p − 1), the congruence yd ≡ 1 (mod p) has precisely d
solutions modulo p, and so it follows that there are precisely d solutions for x.

3. (a) Write f(x) = x4 + x + 1. Then f(1) ≡ 0 (mod 3), and f ′(x) = 4x3 + 1,
so that 30‖f ′(1). Put x0 = 1. Then by applying the Hensel iteration,

x1 ≡ x0 − f(x0)f
′(x0)

−1 ≡ 1− (−1) · 3 ≡ 4 (mod 9)

solves f(x1) ≡ 0 (mod 32), and

x2 ≡ x1 − f(x1)f
′(x1)

−1 ≡ 4− (−1) · 261 ≡ 265 ≡ −5 (mod 27)

solves f(x2) ≡ 0 (mod 27). So x = −5 solves the congruence in question.

(b) One has x2 + 6x + 31 ≡ 0 (mod 121) only if (x + 3)2 + 22 ≡ 0 (mod 11),
whence x + 3 ≡ 0 (mod 11). But then (x + 3)2 ≡ 0 (mod 121), so that the
congruence in question is soluble only when 22 ≡ 0 (mod 121), giving a con-
tradiction. Then the congruence is not soluble.

4. (a) Suppose that a belongs to h modulo p, and that h = 2n is even. Then
since a2n ≡ 1 (mod p), one has an ≡ ±1 (mod p). But a belongs to 2n modulo
p, so that necessarily an 6≡ 1 (mod p). Thus we have ah/2 ≡ −1 (mod p).

(b) If a2n ≡ 1 (mod pk) (k > 2), then (an + 1)(an − 1) ≡ 0 (mod pk). But
since (an− 1, an + 1) = (an− 1, 2) = 1 or 2, the latter congruence implies that
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when p 6= 2, one has pk|(an + 1) or pk|(an − 1). The second case contradicts
the fact that a has order h, and thus we deduce that ah/2 ≡ −1 (mod pk).

5. On combining Fermat’s Little Theorem with Lagrange’s Theorem, we
find that the congruence xp ≡ x (mod p) has precisely p solutions, namely
0, 1, . . . , p−1 modulo p. Put f(x) = xp−x. Then f ′(x) = pxp−1−1 is coprime
to p for these congruence classes, and so it follows from Hensel’s lemma that
for each j with j > 1, and for each r with 0 6 r 6 p − 1, there is a unique
integer x satisfying xp ≡ x (mod pj) and x ≡ r (mod p). Thus, for every
natural number j, the congruence xp ≡ x (mod pj) has precisely p solutions.
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