SOLUTIONS TO HOMEWORK 6

1. (a) Let g be a primitive root modulo p^{h}. Then every reduced residue x modulo p^{h} can be written uniquely in the form $x \equiv g^{u}\left(\bmod p^{h}\right)$ for some integer u with $0 \leqslant u \leqslant p^{h-1}(p-1)$. Consequently, one has $x^{p} \equiv 1\left(\bmod p^{h}\right)$ if and only if $g^{u p} \equiv 1\left(\bmod p^{h}\right)$, and this is possible if and only if $p^{h-1}(p-1) \mid u p$. Since the latter condition is equivalent to requiring $p^{h-2}(p-1) \mid u$, we see that the solutions of $x^{p} \equiv 1\left(\bmod p^{h}\right)$ are given by $x \equiv g^{k p^{h-2}(p-1)}\left(\bmod p^{h}\right)$, with $0 \leqslant k<p$. Hence the congruence in question has precisely p solutions.
(b) Proceeding as in (a), we find that $x^{2 p} \equiv 1\left(\bmod p^{h}\right)$ if and only if one has $g^{2 u p} \equiv 1\left(\bmod p^{h}\right)$, and this is possible if and only if $p^{h-1}(p-1) \mid 2 u p$. Since the latter condition is equivalent to requiring $\left.\frac{1}{2} p^{h-2}(p-1) \right\rvert\, u$, we see that the solutions of $x^{2 p} \equiv 1\left(\bmod p^{h}\right)$ are given by $x \equiv g^{k p^{h-2}(p-1) / 2}\left(\bmod p^{h}\right)$, with $0 \leqslant k<2 p$. Hence the congruence in question has precisely $2 p$ solutions.
2. (a) Put $B=b_{m}+10 b_{m-1}+\ldots+10^{m-1} b_{1}$. Then, if the usual base 10 digital representation of a / n is a recurring decimal in the specified form, one has

$$
\frac{a}{n}=10^{-m} B \sum_{h=0}^{\infty}\left(10^{-m}\right)^{h}=\frac{B}{10^{m}-1} .
$$

Then $a\left(10^{m}-1\right)=B n$, whence $a\left(10^{m}-1\right) \equiv 0(\bmod n)$. But $(a, n)=1$, and thus $10^{m} \equiv 1(\bmod n)$.
(b) When $(10, n)=1$ and the order of 10 modulo n is d, it follows at once that $d \mid \varphi(n)$ (as a consequence of Euler's theorem). Moreover, we have $10^{d} \equiv$ $1(\bmod n)$, and thus $10^{d}-1=C n$, for some positive integer C. Write $B=a C$ in the shape $b_{1} b_{2} \cdots b_{d}$ as a base 10 integer, where $b_{i} \in\{0,1,2, \ldots, 9\}$. Then we have

$$
\frac{a}{n}=\frac{a C}{10^{d}-1}=\frac{B}{10^{d}-1}=10^{-d} B \sum_{h=0}^{\infty}\left(10^{-d}\right)^{h},
$$

whence $a / n=0 \cdot \overline{b_{1} b_{2} \cdots b_{d}}$. So a / n has a recurring decimal expansion with period d. Moreover, since $10^{k} \not \equiv 1(\bmod n)$ whenever $0 \leqslant k<d$, it follows from part (a) that d is the least period of this recurring decimal.
(c) The largest possible order of 10 modulo n is $\varphi(n)$, and this can occur only when 10 is a primitive root modulo n. Moreover, we have $\varphi(n)=n-1$ if and only if n is prime. The desired conclusion follows.
3. For each prime p_{i}, there exists a primitive root g_{i}. Moreover, since $\left(p_{i}, p_{j}\right)=$ 1 for $1 \leqslant i<j \leqslant r$, it follows from the Chinese Remainder Theorem that there exists an integer g with $g \equiv g_{i}\left(\bmod p_{i}\right)$ for $1 \leqslant i \leqslant r$. This integer g has the property that for each integer d and each index i, one has $g^{d} \equiv g_{i}^{d}\left(\bmod p_{i}\right)$, and thus g is primitive modulo p_{i} for $1 \leqslant i \leqslant r$.
4. (a) Since $0<a^{d}-1<a^{q}-1$ whenever $1 \leqslant d<q$, the smallest integer d with $a^{d} \equiv 1\left(\bmod a^{q}-1\right)$ is q. This integer $d=q$ is the order of a modulo $a^{q}-1$, and consequently divides $\varphi\left(a^{q}-1\right)$.
(b) Suppose that $N=a^{q}-1=\prod_{p^{r} \| N} p^{r}$, where the exponents r are positive integers and the primes p are distinct. Hence $\varphi(N)=\prod_{p^{r} \| N} p^{r-1}(p-1)$. From part (a) we have $q \mid \varphi(N)$, so for some prime p dividing N, we have $q \mid p^{r-1}(p-1)$. The latter implies that $q=p$ or $p \equiv 1(\bmod q)$. Thus we conclude that either N is divisible by q, or else N is divisible by a prime number p with $p \equiv 1(\bmod q)$.
5. Suppose that there are only finitely many prime numbers p with $p \equiv$ $1(\bmod q)$, and let these primes be $p_{1}, p_{2}, \ldots, p_{n}$. Put $a=q p_{1} \cdots p_{n}$, and consider the integer $N=a^{q}-1$. Since a is divisible by q, we find that $(N, q)=\left(a^{q}-1, q\right)=1$, so that $q \nmid N$. Then it follows from Q4(b) that N must be divisible by a prime number p with $p \equiv 1(\bmod q)$. But for $1 \leqslant i \leqslant n$, we have $p_{i} \mid a$ and hence $\left(N, p_{i}\right)=\left(a^{q}-1, p_{i}\right)=1$, and thus $p_{i} \nmid N$. Then p is a prime congruent to 1 modulo q that is different from p_{1}, \ldots, p_{n}, contradicting our initial hypothesis. Therefore, there are infinitely many primes p with $p \equiv 1(\bmod q)$.
©Trevor D. Wooley, Purdue University 2023. This material is copyright of Trevor D. Wooley at Purdue University unless explicitly stated otherwise. It is provided exclusively for educational purposes at Purdue University, and is to be downloaded or copied for your private study only.

