SOLUTIONS TO HOMEWORK 7

1. If α is even, then it is evident that g^{α} is a quadratic residue modulo p. If α is odd, meanwhile, then by Fermat's Little Theorem one has $\left(g^{\alpha}\right)^{(p-1) / 2} \equiv g^{(p-1) / 2}$ $(\bmod p)$. Also, since g is primitive, one has $g^{(p-1) / 2} \not \equiv 1(\bmod p)$, whence $g^{(p-1) / 2} \equiv-1(\bmod p)$. Then it follows from Euler's criterion that g^{α} is a quadratic non-residue modulo p. Thus we conclude that (a) g^{α} is a quadratic residue modulo p if and only if α is even, and (b) g^{α} is a quadratic non-residue modulo p if and only if α is odd.
(c) The sum of all the quadratic residues distinct modulo p is

$$
1+g^{2}+\cdots+g^{p-3}=\frac{g^{p-1}-1}{g^{2}-1}
$$

But since $p>3$ one has $\left(g^{2}-1, p\right)=1$, and by Fermat's Little Theorem one has $g^{p-1} \equiv 1(\bmod p)$. Thus the sum of all the quadratic non-residues distinct modulo p is congruent to 0 modulo p.

The product of all the quadratic residues distinct modulo p is

$$
1 \cdot g^{2} \cdots \cdot g^{p-3}=g^{k}
$$

where

$$
k=\sum_{r=0}^{(p-3) / 2} 2 r=\left(\frac{1}{2}(p-1)\right)\left(\frac{1}{2}(p-3)\right) .
$$

But $g^{(p-1) / 2} \equiv-1(\bmod p)$, and so we deduce that

$$
1 \cdot g^{2} \cdots \cdot g^{p-3} \equiv\left(g^{(p-1) / 2}\right)^{(p-3) / 2} \equiv(-1)^{(p-3) / 2} \quad(\bmod p) .
$$

So the product of all the quadratic residues distinct modulo p is congruent to $(-1)^{(p-3) / 2}$ modulo p.
2. (a) Observe that $2023=17^{2} \cdot 7$. Hence, when p is an odd prime number with $p \neq 17$, one has

$$
\left(\frac{2023}{p}\right)=\left(\frac{17^{2} \cdot 7}{p}\right)=\left(\frac{7}{p}\right) .
$$

(b) One has

$$
\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)=(-1)^{(p-1) / 2}(-1)^{\left(p^{2}-1\right) / 8} .
$$

When $p \equiv 1(\bmod 8)$, we have $(p-1) / 2+\left(p^{2}-1\right) / 8 \equiv 0+0 \equiv 0(\bmod 2)$, and when $p \equiv 3(\bmod 8)$, we have $(p-1) / 2+\left(p^{2}-1\right) / 8 \equiv 1+1 \equiv 0(\bmod 2)$. Also, when $p \equiv-1(\bmod 8)$, we have $(p-1) / 2+\left(p^{2}-1\right) / 8 \equiv 1+0 \equiv 1(\bmod 2)$, and when $p \equiv-3(\bmod 8)$, we have $(p-1) / 2+\left(p^{2}-1\right) / 8 \equiv 0+1 \equiv 1(\bmod 2)$. Thus $\left(\frac{-2}{p}\right)=1$ if and only if $p \equiv 1(\bmod 8)$ or $p \equiv 3(\bmod 8)$.
3. (a) If a and b are both quadratic non-residues, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)=-1$, and hence

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=(-1)^{2}=1,
$$

so that $a b$ is a quadratic residue.
(b) It follows from part (a) that at least one of the congruences $x^{2} \equiv a(\bmod p)$, $x^{2} \equiv b(\bmod p)$ and $x^{2} \equiv a b(\bmod p)$ is soluble. Thus, we can always choose a value of x for which some one of $x^{2}-a, x^{2}-b$ and $x^{2}-a b$ is divisible by p, whence the congruence $\left(x^{2}-a\right)\left(x^{2}-b\right)\left(x^{2}-a b\right) \equiv 0(\bmod p)$ always possesses a solution x modulo p.
4. (a) Suppose that M_{n} is prime but n is composite, say $n=a b$ with $1<a \leqslant$ $b<n$. Then $2^{n}-1=2^{a b}-1=\left(2^{a}-1\right)\left(2^{(b-1) a}+2^{(b-2) a}+\cdots+1\right)$, and since a and b both exceed 1 , neither of the latter factors is 1 . Thus M_{n} is composite, giving a contradiction. Then whenever M_{n} is prime we find that n is prime.
(b) Since $p^{\prime}=2 p+1$ is prime, we have

$$
\left(\frac{2}{p^{\prime}}\right)=(-1)^{\left(p^{\prime 2}-1\right) / 8}=(-1)^{(2 p)(2 p+2) / 8}=(-1)^{p(p+1) / 2}
$$

so that when $p \equiv 3(\bmod 4)$, we have $\left(\frac{2}{p^{\prime}}\right)=1$. But by Euler's Criterion,

$$
\left(\frac{2}{p^{\prime}}\right) \equiv 2^{\left(p^{\prime}-1\right) / 2}=2^{p} \quad\left(\bmod p^{\prime}\right)
$$

and thus we deduce that $2^{p} \equiv 1\left(\bmod p^{\prime}\right)$.
(c) Since the prime $251 \equiv 3(\bmod 4)$, and $2 \cdot 251+1=503$ is prime, we deduce from the above that $503 \mid\left(2^{251}-1\right)$, whence $2^{251}-1$ is not a Mersenne prime.
© Trevor D. Wooley, Purdue University 2023. This material is copyright of Trevor D. Wooley at Purdue University unless explicitly stated otherwise. It is provided exclusively for educational purposes at Purdue University, and is to be downloaded or copied for your private study only.

