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1. If α is even, then it is evident that gα is a quadratic residue modulo p. If α is
odd, meanwhile, then by Fermat’s Little Theorem one has (gα)(p−1)/2 ≡ g(p−1)/2

(mod p). Also, since g is primitive, one has g(p−1)/2 6≡ 1 (mod p), whence
g(p−1)/2 ≡ −1 (mod p). Then it follows from Euler’s criterion that gα is a
quadratic non-residue modulo p. Thus we conclude that (a) gα is a quadratic
residue modulo p if and only if α is even, and (b) gα is a quadratic non-residue
modulo p if and only if α is odd.

(c) The sum of all the quadratic residues distinct modulo p is

1 + g2 + · · ·+ gp−3 =
gp−1 − 1

g2 − 1
.

But since p > 3 one has (g2 − 1, p) = 1, and by Fermat’s Little Theorem one
has gp−1 ≡ 1 (mod p). Thus the sum of all the quadratic non-residues distinct
modulo p is congruent to 0 modulo p.

The product of all the quadratic residues distinct modulo p is

1 · g2 · · · · · gp−3 = gk,

where

k =

(p−3)/2∑
r=0

2r =
(
1
2
(p− 1)

) (
1
2
(p− 3)

)
.

But g(p−1)/2 ≡ −1 (mod p), and so we deduce that

1 · g2 · · · · · gp−3 ≡ (g(p−1)/2)(p−3)/2 ≡ (−1)(p−3)/2 (mod p).

So the product of all the quadratic residues distinct modulo p is congruent to
(−1)(p−3)/2 modulo p.

2. (a) Observe that 2023 = 172 · 7. Hence, when p is an odd prime number
with p 6= 17, one has (

2023

p

)
=

(
172 · 7
p

)
=

(
7

p

)
.

(b) One has (
−2

p

)
=

(
−1

p

)(
2

p

)
= (−1)(p−1)/2(−1)(p

2−1)/8.

When p ≡ 1 (mod 8), we have (p−1)/2 + (p2−1)/8 ≡ 0 + 0 ≡ 0 (mod 2), and
when p ≡ 3 (mod 8), we have (p−1)/2+(p2−1)/8 ≡ 1+1 ≡ 0 (mod 2). Also,
when p ≡ −1 (mod 8), we have (p − 1)/2 + (p2 − 1)/8 ≡ 1 + 0 ≡ 1 (mod 2),
and when p ≡ −3 (mod 8), we have (p−1)/2+(p2−1)/8 ≡ 0+1 ≡ 1 (mod 2).

Thus

(
−2

p

)
= 1 if and only if p ≡ 1 (mod 8) or p ≡ 3 (mod 8).
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3. (a) If a and b are both quadratic non-residues, then

(
a

p

)
=

(
b

p

)
= −1,

and hence (
ab

p

)
=

(
a

p

)(
b

p

)
= (−1)2 = 1,

so that ab is a quadratic residue.

(b) It follows from part (a) that at least one of the congruences x2 ≡ a (mod p),
x2 ≡ b (mod p) and x2 ≡ ab (mod p) is soluble. Thus, we can always choose a
value of x for which some one of x2 − a, x2 − b and x2 − ab is divisible by p,
whence the congruence (x2−a)(x2− b)(x2−ab) ≡ 0 (mod p) always possesses
a solution x modulo p.

4. (a) Suppose that Mn is prime but n is composite, say n = ab with 1 < a 6
b < n. Then 2n− 1 = 2ab− 1 = (2a− 1)(2(b−1)a + 2(b−2)a + · · ·+ 1), and since a
and b both exceed 1, neither of the latter factors is 1. Thus Mn is composite,
giving a contradiction. Then whenever Mn is prime we find that n is prime.

(b) Since p′ = 2p+ 1 is prime, we have(
2

p′

)
= (−1)(p

′2−1)/8 = (−1)(2p)(2p+2)/8 = (−1)p(p+1)/2,

so that when p ≡ 3 (mod 4), we have

(
2

p′

)
= 1. But by Euler’s Criterion,(

2

p′

)
≡ 2(p′−1)/2 = 2p (mod p′),

and thus we deduce that 2p ≡ 1 (mod p′).

(c) Since the prime 251 ≡ 3 (mod 4), and 2 ·251+1 = 503 is prime, we deduce
from the above that 503|(2251 − 1), whence 2251 − 1 is not a Mersenne prime.
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