
SOLUTIONS TO HOMEWORK 8

1.Use quadratic reciprocity:(
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=
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2. (a) By quadratic reciprocity, one has(
5

p

)
= (−1)(5−1)(p−1)/4

(p
5

)
=

(p
5

)
.

But 12 ≡ 42 ≡ 1 (mod 5) and 22 ≡ 32 ≡ 4 (mod 5). Then we deduce that(p
5

)
= 1 if and only if p ≡ 1, 4 (mod 5). Thus we conclude that 5 is a quadratic

residue modulo p if and only if p ≡ 1 or 4 modulo 5.

(b) Suppose that there are only finitely many primes p of the shape 5k+4, say
p1, . . . , pn. Put Q = (2p1 . . . pn)2−5. The first part of this question shows that
the only odd prime divisors p of Q must have the shape either 5k+1 or 5k+4.
But since p2i ≡ 42 ≡ 1 (mod 5), we have Q ≡ 4 (mod 5), so that the odd
number Q must have at least one prime divisor of the shape 5k+ 4. Moreover,
for each i one has (Q, pi) = (−5, pi) = 1, so that pi - Q. Thus we deduce
that Q is divisible by some prime of the shape 5k + 4 not amongst p1, . . . , pn,
yielding a contradiction. We conclude that there are infinitely many primes of
the shape 5k + 4.

3. By quadratic reciprocity, one has(
−7

p

)
= (−1)(p−1)/2

(
7

p

)
= (−1)(p−1)/2+(7−1)(p−1)/4
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7

)
=
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)
.
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But 12 ≡ 62 ≡ 1 (mod 7), 22 ≡ 52 ≡ 4 (mod 7), and 32 ≡ 42 ≡ 2 (mod 7).

Then we deduce that
(p

7

)
= 1 if and only if p ≡ 1, 2, 4 (mod 7). Thus we

conclude that −7 is a quadratic residue modulo p if and only if p ≡ 1, 2, 4
(mod 7).

4. (a) When p ≡ 5 (mod 12), it follows from quadratic reciprocity thatone has(
3

p

)
= (−1)(p−1)/2

(
3

p

)
=

(p
3

)
=

(
2

3

)
= −1.

(b) When p = 22n + 1 is prime, it follows from Fermat’s Little Theorem that
the order of 3 modulo p divides p − 1 = 22n . Then the order of 3 modulo
p is a power of 2, and if 3 is not a primitive root, then this order divides
22n−1 = (p − 1)/2. In such circumstances, we find from part (a) via Euler’s
criterion that

−1 =

(
3

p

)
≡ 3(p−1)/2 ≡ 1 (mod p),

yielding a contradiction. Thus 3 must be a primitive root modulo p.

5. (a) Suppose that x and y are integers with y2 = x3 + 45. Observe that
y2 ≡ 0, 1 or 4 modulo 8. If y2 ≡ 1 (mod 8), then x3 ≡ 4 (mod 8), which is
impossible. If y2 ≡ 0 (mod 8), then x3 ≡ 3 (mod 8), whence x ≡ 3 (mod 8).
If y2 ≡ 4 (mod 8), then x3 ≡ 7 (mod 8), whence x ≡ 7 (mod 8). Thus we
deduce that x ≡ 7 (mod 8) or x ≡ 3 (mod 8).

(b) If x ≡ 7 (mod 8), then x2−3x+9 ≡ 5 (mod 8), and so it is impossible that
x2−3x+9 is divisible only by primes congruent to ±1 modulo 8. Consequently,
x2−3x+9 must be divisible by a prime congruent to ±3 (mod 8). Given such
a prime p, since y2 − 2 · 32 = (x + 3)(x2 − 3x + 9), one must have y2 ≡ 2 · 32

(mod p), whence p = 3 or

(
2

p

)
= 1. But the latter is possible if and only if

p ≡ ±1 (mod 8), and this yields a contradiction. Thus we find that p = 3 and
3|y, and the equation y2 = x3 + 45 then implies that 3|x and hence (y/3)2 ≡ 2
(mod 3), again yielding a contradiction.

(c) When x ≡ 3 (mod 8), one has x2 + 3x + 9 ≡ 3 (mod 8), and moreover
it is impossible that x2 + 3x + 9 is divisible only by primes congruent to ±1
modulo 8. Then x2 + 3x + 9 is divisible by a prime p ≡ ±3 (mod 8), whence

y2 ≡ 2 · 62 (mod p). Thus p = 3 or

(
2

p

)
= 1. The former is impossible just

as in (b), and the latter is again possible if and only if p ≡ ±1 (mod 8). We
therefore again arrive at a contradiction.

We may consequently conclude that the equation y2 = x3 + 45 is insoluble
in integers x and y.
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