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1. (a) The function µ(n) is multiplicative, and hence µ2(n) is also multiplica-
tive. Then it suffices to examine prime powers, where we find that for each
prime p and non-negative integer h, one has∑

d|ph
µ2(d) =

h∑
l=0

µ2(pl) =

{
1, when h = 0,

1 + µ(p)2 = 2, when h > 1.

Thus, by applying multiplicativity, we see that when n =
∏

ph‖n p
h, one has∑

d|n µ
2(d) =

∏
p|n 2 = 2ω(n), as required.

(b) Since τ(n) is also multiplicative, we may proceed in like manner. Here we
note that τ(pl) = l + 1, and hence

∑
d|ph

µ(d)τ(d) =
h∑
l=0

µ(pl)τ(pl) =

{
1, when h = 0,

1− 2 = −1, when h > 1.

Thus, by applying multiplicativity, we see that when n =
∏

ph‖n p
h, one has∑

d|n µ(d)τ(d) =
∏

p|n(−1) = (−1)ω(n), as required.

2. (a) The sum of the first n positive integers is n(n+ 1)/2, so(
n∑
a=1

a

)2

= (n(n+ 1)/2)2 = 1
4
n2(n+ 1)2.

Meanwhile, whenever
n∑
a=1

a3 = 1
4
n2(n+ 1)2,

then one has

n+1∑
a=1

a3 = (n+ 1)3 + 1
4
n2(n+ 1)2 = 1

4
(n+ 1)2(4(n+ 1) +n2) = 1

4
(n+ 1)2(n+ 2)2.

Since
∑1

a=1 a
3 = 1 = 1

4
12(1 + 1)2, we conclude by induction that

n∑
a=1

a3 = 1
4
n2(n+ 1)2 =

(
n∑
a=1

a

)2

.

(b) For each prime power ph, we have

h∑
a=0

τ(pa) =
h∑
a=0

(a+ 1) = 1
2
(h+ 1)(h+ 2),

1
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and
h∑
a=0

τ(pa)3 =
h∑
a=0

(a+ 1)3 = 1
4
(h+ 1)2(h+ 2)2.

Thus, whenever n is a prime power, one has

∑
d|n

τ(d)3 =

∑
d|n

τ(d)

2

,

and the desired conclusion follows by multiplicativity.

3. Let f be an arithmetic function.

(a) When a and n are positive integers, one has∑
d|(a,n)

µ(d) = ν((a, n)) =

{
1, when (a, n) = 1,

0, when (a, n) > 1.

(b) Thus ∑
16a6n
(a,n)=1

f(a) =
∑

16a6n

∑
d|(a,n)

µ(d)f(a) =
∑
d|n

µ(d)
∑

16a6n
d|a

f(a).

(c) First taking f(a) = 1, we find that∑
16a6n
(a,n)=1

1 =
∑
d|n

µ(d)
∑

16a6n
d|a

1 =
∑
d|n

µ(d)n/d = ϕ(n).

Next, taking f(a) = a, we obtain∑
16a6n
(a,n)=1

a =
∑
d|n

µ(d)
∑

16a6n
d|a

a =
∑
d|n

µ(d)d · 1
2
(n/d)(n/d+ 1)

= 1
2
n
∑
d|n

µ(d)n/d+ 1
2
n
∑
d|n

µ(d) = 1
2
nϕ(n).

4. (a) Suppose that n and m are coprime with n =
∏

ph‖n p
h and m =

∏
πh|m π

h,

say, with p and π denoting prime numbers. Since (n,m) = 1, the primes p and
π occurring in these products are distinct, and thus

s(nm) =
∏
p|nm

p =

∏
p|n

p

∏
π|m

π

 = s(n)s(m).

Moreover, one has s(1) = 1, and so we conclude that s(n) is a multiplicative
function of n.

(b) By Möbius inversion, the arithmetic function f(n) defined by putting

f(n) =
∑
d|n

µ(d)s(n/d)
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satisfies the property that s(n) =
∑

d|n f(d). But µ(n) and s(n) are both
multiplicative functions, and thus f is also a multiplicative function. We have
f(1) = 1, and when p is prime and h > 1,

f(ph) =
h∑
a=0

µ(pa)s(ph−a) = s(ph)− s(ph−1) =

{
p− 1, when h = 1,

p− p = 0, when h > 2.

Thus, in all cases one has f(ph) = µ2(ph)ϕ(ph), and by multiplicativity we
conclude that f(n) = µ2(n)ϕ(n).

5. (a) Suppose that a(n) and b(n) are multiplicative. Then whenever m,n ∈ N
satisfy (m,n) = 1, we have a(mn) = a(m)a(n) and b(mn) = b(m)b(n), whence

c(mn) =
∑
d|mn

a(nm/d)b(d) =
∑
e|n

∑
f |m

a

(
n

e

m

f

)
b(ef).

Since the values of e and f in the latter summation are necessarily coprime,
we find that

c(mn) =
∑
e|n

∑
f |m

a(n/e)a(m/f)b(e)b(f)

=

∑
e|n

a(n/e)b(e)

∑
f |m

a(m/f)b(f)

 = c(m)c(n).

Thus c(n) is indeed a multiplicative function.

(b) Let a(n) = φ(n) and b(n) = τ(n). Then for each prime power ph one has

h∑
j=0

φ(ph−j)τ(pj) =
h−1∑
j=0

(ph−j − ph−j−1)(j + 1) + φ(p0)τ(ph)

= ph + ph−1 + · · ·+ p− h+ h+ 1 =
∑
d|ph

d = σ(ph),

and so
σ(ph) =

∑
d|ph

φ(ph/d)τ(d).

Thus it follows from multiplicativity that σ(n) =
∑

d|n φ(n/d)τ(d) for n ∈ N.
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