
NUMBER THEORY, 2023

TREVOR D. WOOLEY

1. Introduction

Number theory concerns itself with studying the multiplicative and additive
structure of the natural numbers N = {1, 2, 3, . . . } (defined via the Peano
axioms or some such: this will not concern us). Frequently, number theoretic
questions are better asked in the set of all integers Z = {0,±1,±2,±3, . . . },
and better answered by making use of the rational numbers Q = {p/q : p ∈
Z, q ∈ N}, the real numbers R, and the complex numbers C, where more
structure may become apparent.

Some form of number theory was developed by the ancient Babylonians,
Egyptians and Greeks, and many modern open problems are motivated by
this work.

Problem 1.1 (Egyptian Fractions). Is it true that for all integers n with
n > 2, there exist x, y, z ∈ N satisfying the equation
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For example, one has
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It is generally believed that the answer to this problem should be in the affir-
mative. The solubility of the above equation has been checked for all n < 1017

(by E. S. Saez, 2014), and is known to hold “for almost all” natural numbers n;
see R. C. Vaughan, On a problem of Erdős, Straus and Schinzel, Mathematika
17 (1970), 193–198.

Problem 1.2 (Riemann Hypothesis). Is it true that when x is large enough,
then one has∣∣∣∣card{p 6 x : p is prime} −

∫ x

2

dt

log t

∣∣∣∣ < x1/2(log x)1000000?

There is a million dollar Millenial Prize from the Clay Foundation available
for a proof of the conjecture that the answer here is in the affirmative. The
sharpest unconditional result in this direction has the function

x exp
(
−A(log x)3/5(log log x)−1/5

)
in place of x1/2(log x)1000000, wherein A is a suitable positive constant. This
was proved independently by I. M. Vinogradov and Korobov in 1958.
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Problem 1.3 (Mersenne Primes). Show that there are infinitely many primes
of the shape 2p − 1, with p a prime number.

At the time of writing, the largest known prime is 282589933 − 1, a number
with 24862048 decimal digits. The primality of this number was established
through the efforts of GIMPS (see Great Internet Mersenne Prime Search, at
http://www.mersenne.org/) on 7th December 2018. One can check that the
integer 2n − 1 can be prime only when n is prime (why?). The integers 2p − 1
with p a prime number are known as Mersenne primes, and an industry of
efficient primality tests for these special numbers is reflected in the GIMPS
effort. The latest discovery earned a $3000 prize, and there is $150000 for the
discovery of the first 100 million digit prime number.

Problem 1.4 (ABC Conjecture). Show that, for each ε > 0, there exists
Cε > 0 (depending at most on ε) such that whenever abc 6= 0 and a+b+c = 0,
then

max{|a|, |b|, |c|} 6 Cε

( ∏
p divides abc

p
)1+ε

.

Note here that the product is taken over distinct prime divisors of a, b and c.
The ABC Conjecture has many profound implications, but until very recently
seemed far beyond reach. Shinichi Mochizuki has recently claimed to have
proved this conjecture. However, there is considerable skepticism concerning
the validity of his proof, and despite much activity attempting to verify his
proof, serious problems have been identified without fixes. See

http:\\en.wikipedia.org\wiki\Shinichi_Mochizuki

for more.

The conjecture that assumed the label “Fermat’s Last Theorem”, famously
proved by Wiles in 1995, was motivated by the work of Diophantus. Even
quite modest generalisations of this conjecture remain open.

Problem 1.5 (Generalised Fermat problem). Is it true that the equation

xn + yn = zn + wn

has no solutions in integers x, y, z, w, n, with n > 5, other than the obvious
ones with

{x, y} = {±z,±w} (n even),

{x, y} = {z, w} or {x+ y = z + w = 0} (n odd)?

It is generally believed that the answer to this problem should be in the
affirmative. For some quantitative work on this problem, see T. D. Browning,
Equal sums of two kth powers, J. Number Theory 96 (2002), 293–318.

Problem 1.6 (Goldbach Conjecture). Is every even integer exceeding 2 a sum
of two prime numbers?

It is generally believed that the answer to this problem should be in the
affirmative. It is known that “almost all” even natural numbers can indeed be
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written as the sum of two primes; see H. L. Montgomery and R. C. Vaughan,
The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975), 353–370 for
decisive progress in the history of this problem.

A positive integer n is called perfect if it is equal to the sum of all of the
divisors of n (itself!) smaller than n. Thus, one sees that 6 = 1 + 2 + 3, 28
and 496 are all perfect.

Problem 1.7 (Odd perfect numbers). Do there exist odd perfect numbers?

It is generally believed that the answer to this problem should be in the
negative. It is known that if n is odd and perfect, then n > 101500, and further
n has at least 101 prime factors and at least 10 distinct prime factors (see
P. Ochem and M. Rao, Odd perfect numbers are greater than 101500, Math.
Comp. 81 (2012), 1869–1877). We note that, although Wirsing showed in
1959 that for some positive number W , and all large values of x, one has

card {n 6 x : n is odd and perfect} 6 xW/ log log x,

it remains possible that there are more odd than even perfect numbers.

2. Divisibility

We begin by reviewing some basic properties of divisibility.

Definition 2.1. (i) Suppose that a, b ∈ Z. We say that b divides a (written
b|a) when there exists c ∈ Z such that a = bc. In such circumstances, we say
that a is divisible by b, or that b is a divisor of a;

(ii) When a is not divisible by b, we write b - a;

(iii) When b|a and 1 6 b < a, we say that b is a proper divisor of a;

(iv) We write ak‖b when ak|b but ak+1 - b.
It is understood that b|a makes sense only when b is non-zero.

Note that the notation ak‖b relates to the ordered pair (a, k) and b. Thus the
statement 4‖24, which is implicitly asserting that 41‖24, holds because 4|24
but 42 - 24. Meanwhile, the (distinct) statement 22‖24 is false. In fact one has
23‖24 because 23|24 but 24 - 24. This notation is mostly used regarding prime
power divisibility, and so any possible confusion will be easily avoided.

The next theorem records the basic properties of divisibility that are intu-
itively clear, but easily established from the definition.

Theorem 2.2. (i) a|a for every a ∈ Z \ {0};
(ii) a|0 for every a ∈ Z \ {0};
(iii) if a|b and b|c, then a|c;
(iv) if a|b and a|c, then for all x, y ∈ Z, one has a|(bx+ cy);

(v) if a|b and b|a, then a = ±b;
(vi) if a|b and a > 0 and b > 0, then a 6 b;

(vii) when m 6= 0, one has a|b⇔ ma|mb.
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Proof. We will leave these assertions as exercises, though in order to illustrate
ideas, we will give a formal proof of part (vii). Suppose that m 6= 0 and a|b.
Then there exists c ∈ Z with the property that b = ac, whence mb = m(ac).
So there exists c ∈ Z with the property that (mb) = (ma)c, whence by the
definition of divisibility (ma)|(mb). Conversely, if m 6= 0 and ma|mb, then
there exists c ∈ Z with mb = (ma)c. But since m 6= 0, the latter implies that
b = ac. So there exists c ∈ Z with the property that b = ac, so from the
definition of divisibility, one has a|b. �

The next theorem underpins the development of the theory of congruences.

Theorem 2.3 (The Division Algorithm). For any a, b ∈ Z with a > 0, there
exist unique integers q and r with b = qa + r and 0 6 r < a. If, further, one
has a - b, then one has the stronger inequality 0 < r < a.

Proof. Let aq be the largest multiple of a not exceeding b. Then if we put
r = b− aq, one has r > 0. Moreover, by hypothesis one has a(q + 1) > b, and
thus r = b− aq < a. This establishes the existence of the integers q and r as
stated. In order to establish uniqueness, suppose that another pair q′, r′ satisfy
analogous conditions. If r 6= r′, there is no loss of generality in supposing that
r < r′. Then since aq′ + r′ = b = aq + r, one has a(q − q′) = r′ − r, whence
a|(r′ − r) and 0 < r′ − r < a. But the latter contradicts case (vi) of Theorem
2.2 (which would imply that r′ − r > a). Thus we find that r = r′, and this
now leads to the equation qa = q′a. But a is non-zero, so q = q′. Thus we find
that (q, r) = (q′, r′), and this establishes uniqueness.

Finally, if r = 0 then b = qa, whence a|b. The final assertion of the theorem
is now immediate. �

Definition 2.4. (i) Suppose that a ∈ Z \ {0} and b, c ∈ Z. We say that a is a
common divisor of b and c when a|b and a|c;
(ii) When b and c are not both zero, the number of common divisors of b and c
is finite (see Theorem 2.2(vi)), and thus we may define the greatest common
divisor (or highest common factor) of b and c to be the largest common
divisor. The greatest common divisor of b and c is written (b, c) (or gcd(b, c)
or hcf(b, c));

(iii) When g1, . . . , gn are integers, not all zero, we similarly write (g1, . . . , gn)
for the largest integer d satisfying the condition that d|gi (1 6 i 6 n).

We remark that it is common to refer to the integers a and b as being coprime
when (a, b) = 1.

Example 2.5. One has (0, 2) = 2, (1, 3) = 1 and (1729, 182) = 91 (at
this point one can use trial and error, observing that (a, b) must be at most
min{|a|, |b|}).

The next theorem provides a useful tool to establish simple properties of
greatest common divisors.

Theorem 2.6. If g = (b, c), then there exist integers x and y with g = bx+cy.
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Proof. Define the integer d by setting

d = min{bu+ cv : u, v ∈ Z and bu+ cv > 0}.
Also, let x and y be the values of u and v corresponding to this minimum, so
that d = bx+ cy.

We first prove that d|b. If to the contrary d - b, then by the Division
Algorithm (Theorem 2.3), there exist integers r and q with b = dq + r and
0 < r < d. Then

r = b− dq = b− q(bx+ cy) = b(1− qx) + c(−qy),

whence
r > min{bu+ cv : u, v ∈ Z and bu+ cv > 0} = d.

This gives a contradiction, since r < d, and thus we find that d|b.
A similar argument shows that d|c, and thus d is indeed a common divisor

of b and c, which is to say that d 6 (b, c). But g = (b, c), and so there
exist integers B and C with b = gB and c = gC. Consequently, one has
d = g(Bx + Cy), and hence g|d. Thus g > 0, d > 0 and g|d, so by Theorem
2.2(vi) one has g 6 d. Then one has d > (b, c) in addition to the relation
d 6 (b, c) which we derived above, so that necessarily d = (b, c). But then
(b, c) = bx+ cy, and this completes the proof of the theorem. �

Theorem 2.7. The greatest common divisor of b and c is:

(i) the least positive value of bx+ cy, as x and y range over Z;

(ii) the positive common divisor of b and c that is divisible by all other such
divisors.

Proof. The assertion (i) is plain from Theorem 2.6. For part (ii), observe that
there exist integers x and y with (b, c) = bx + cy. Then if d|b and d|c, say
b = dB and c = dC, one finds that (b, c) = d(Bx + Cy), whence d|(b, c). So
(b, c) is divisible by all other positive common divisors of b and c. �

Remark 2.8. If g1, . . . , gn are not all zero, then it follows as in the proof of
Theorem 2.6 that there exist integers x1, . . . , xn with (g1, . . . , gn) = g1x1 +
· · ·+ gnxn.

The criterion for determining the greatest common divisor recorded in The-
orem 2.6, and (in modified form) in Theorem 2.7, provides a simple and di-
rect approach to establishing simple properties of the greatest common divisor
function.

Theorem 2.9. Whenever m ∈ N, one has (ma,mb) = m(a, b).

Proof. Making use of Theorem 2.7(i) (twice), one has

(ma,mb) = min{max+mby : x, y ∈ Z and max+mby > 0}
= mmin{ax+ by : x, y ∈ Z and ax+ by > 0}
= m(a, b).

�
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Remark 2.10. Similiarly, when d ∈ N, and d|a and d|b, one has (a/d, b/d) =
(a, b)/d. In particular, if g = (a, b), then (a/g, b/g) = 1.

Proof. The first assertion follows from Theorem 2.9 by means of the relation
(d(a/d), d(b/d)) = d(a/d, b/d), and the second is immediate from the first. �

Theorem 2.11. Whenever a, b, m are integers with (a,m) = (b,m) = 1, one
has (ab,m) = 1.

Proof. By Theorem 2.6, there exist integers x, y, u, v with 1 = ax + my =
bu+mv. Thus we obtain

(ax)(bu) = (1−my)(1−mv) = 1−mw,
say, with w = y + v −mvy. Consequently, one has (ab)(xu) + mw = 1. But
then by Theorem 2.2(iv), any common divisor of ab and m divides 1. We
therefore conclude that (ab,m) = 1. �

Theorem 2.12. For any integer x, and for any integers a and b, not both
zero, one has

(a, b) = (b, a) = (a,−b) = (a, b+ ax).

Proof. The first assertions of the theorem are plain from Theorem 2.7(i). In
order to prove that (a, b) = (a, b+ax), observe that by Theorem 2.6, there exist
integers u and v with (a, b) = au+ bv, whence (a, b) = a(u− xv) + (b+ ax)v.
We therefore have (a, b+ ax)|(a, b). But (a, b)|a and (a, b)|b, so (a, b)|(b+ ax).
But now we have (a, b + ax)|(a, b)|(a, b + ax), and so by virtue of positivity,
Theorem 2.2(v) establishes the desired conclusion. �

Example: Compute (n2 + 1, n+ 1) for n ∈ Z.

Solution: Observe that repeated application of Theorem 2.12 shows that

(n2 + 1, n+ 1) = (n2 + 1− n(n+ 1), n+ 1) = (1− n, n+ 1)

= (1− n+ (n+ 1), n+ 1) = (2, n+ 1),

whence

(n2 + 1, n+ 1) =

{
2, when n is odd,

1, when n is even.

Theorem 2.13. Suppose that c|ab and (b, c) = 1. Then c|a.

Proof. By Theorem 2.9, the hypotheses of the theorem imply that (ab, ac) =
|a|(b, c) = |a|. But by hypothesis, one has c|ab, which implies that c|(ab, ac).
We thus conclude that c|a. �

At last we are positioned to describe an algorithm for calculating greatest
common divisors. Of course, by exhaustive checking one could determine the
greatest common divisor of two integers b and c in time O(min{|b|, |c|}), but
the Euclidean Algorithm has running time only O(log(min{|b|, |c|})). Indeed,
for most pairs of integers b and c, the Euclidean Algorithm takes only about
(12 log 2/π2) log(max{|b|, |c|}) steps.
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Theorem 2.14 (Euclidean Algorithm). Suppose that b ∈ Z and c ∈ N. Define
the integers ri and qi for i > 1 by repeated application of the Division Algorithm
thus:

b = cq1 + r1, with 0 < r1 < c,

c = r1q2 + r2, with 0 < r2 < r1,

r1 = r2q3 + r3, with 0 < r3 < r2,

· · ·
rj−2 = rj−1qj + rj, with 0 < rj < rj−1,

rj−1 = rjqj+1.

(Here we adopt obvious conventions if the process terminates prematurely.)
Then (b, c) = rj, the last non-zero remainder in the division process.

Proof. Repeated application of Theorem 2.12 yields

(b, c) = (b− cq1, c) = (r1, c)

= (c− r1q2, r1) = (r2, r1)

= (r1 − r2q3, r2) = (r3, r2)

= · · · = (rj, rj−1) = (rj, 0) = rj.

This conclusion of the theorem follows at once. �

Observation 2.15. One can apply the Euclidean Algorithm to obtain integral
solutions (x, y) to linear equations of the shape bx+ cy = (b, c) by “reversing”
the application of the algorithm. In general, one can apply this method to
solve the equation bx+cy = k whenever (b, c)|k (Why? Convince yourself that
this is the case.)

Proof. Using the notation employed in the statement of the Euclidean Algo-
rithm, one finds that r1 is a linear combination of b and c, and then that r2
is a linear combination of c and r1, and hence of b and c, and that r3 is a
linear combination of r1 and r2, and hence of b and c, and so on. In this way,
we see that every remainder ri that occurs in the algorithm is itself a linear
combination of b and c, and the desired conclusion follows. �

Example 2.16. Determine the greatest common divisor of 2023 and 324, and
find integers x and y with 2023x+ 324y = (2023, 324).

Proof. Applying the Euclidean Algorithm, we obtain

2023 = 324 · 6 + 79

324 = 79 · 4 + 8

79 = 8 · 9 + 7

8 = 7 · 1 + 1

7 = 7 · 1,
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and so (2023, 324) = 1. Reversing this application of the Euclidean Algorithm,
we find that

1 = 8− 7 · 1
= 8− (79− 8 · 9) = 8 · 10− 79

= (324− 79 · 4) · 10− 79 = 324 · 10− 79 · 41

= 324 · 10− (2023− 324 · 6) · 41 = 324 · 256− 2023 · 41.

Thus we see that the equation 2023x+324y = (2023, 324) = 1 has the solution
(x, y) = (−41, 256). �

Note 2.17. One can obtain integral solutions to linear equations in more
variables by breaking the equation down into subequations of two variables
each. In order to illustrate the strategy, consider the equation 18x+39y+77z =
1. One can verify easily that (18, 39) = 3, and so the equation 18x + 39y = 3
possesses an integral solution, say 18x0+39y0 = 3, which may be found via the
Euclidean Algorithm. Now substitute this solution into the original equation
with an additional parameter, and solve the resulting equation. We obtain the
equation 3l + 77z = 1. Since (3, 77) = 1, the latter equation has an integral
solution (l, z) = (l0, z0), say, which may be found via the Euclidean Algorithm.
A solution of the original equation is then given by (x, y, z) = (l0x0, l0y0, z0).

We finish this section by introducing the concept of least common multiples.

Definition 2.18. (i) Non-zero integers a1, . . . , an are said to have a common
multiple b when ai|b for 1 6 i 6 n.

(ii) The least common multiple of the non-zero integers a1, . . . , an is the smallest
positive common multiple of these integers, which we denote by [a1, . . . , an].

Theorem 2.19. (i) If m is a positive integer and a and b are non-zero integers,
then [ma,mb] = m[a, b].

(ii) When a and b are non-zero integers, one has [a, b](a, b) = |ab|.

Proof. First consider the assertion of part (i) of the theorem. Let D = [ma,mb]
and d = [a, b]. Then md is a multiple of both ma and mb, so that md > D.
Also, D is a multiple of both ma and mb, so that D/m is a multiple of both a
and b. Then D/m > d. We have therefore shown that md 6 D 6 md, whence
D = md. This establishes part (i) of the theorem.

Now consider part (ii). Put d = (a, b). Then (a/d, b/d) = (a, b)/d = 1 and
[a/d, b/d] = [a, b]/d. We aim to show that whenever a′ and b′ satisfy (a′, b′) = 1,
then [a′, b′](a′, b′) = |a′b′|, for then we obtain [a/d, b/d](a/d, b/d) = |ab|/d2,
whence ([a, b]/d)((a, b)/d) = |ab|/d2, so that [a, b](a, b) = |ab|, as desired.
There is no loss of generality in supposing that a′ > 0 and b′ > 0. We may
suppose that [a′, b′] = ma′, with b′|ma′. Since we now suppose that (a′, b′) = 1,
it follows from Theorem 2.13 that b′|m, whence b′ 6 m. Then b′a′ 6 ma′.
But b′a′ > [b′, a′] = ma′. We therefore conclude that b′a′ = [b′, a′] whenever
(b′, a′) = 1. In view of our earlier remarks, the desired conclusion follows. �
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Theorem 2.20. Suppose that b1, . . . , bn are non-zero integers. Then, putting
k = [b1, . . . , bn], the set of all common multiples of the integers b1, . . . , bn is
given by {km : m ∈ Z}.

Proof. Exercise. �

3. Primes and the fundamental theorem of arithmetic

Definition 3.1. A natural number p satisfying the conditions (i) p > 1, and
(ii) that whenever d|p, one has |d| = 1 or p, is called a prime number.
Any integer exceeding 1 which is not a prime number is called a composite
number.

Theorem 3.2 (Factorisation into primes). Every integer n exceeding 1 may
be written as a product of prime numbers.

Proof. The theorem plainly holds for n = 2. Suppose that the theorem holds
for 1 < n 6 N . The least divisor d of N + 1 with d > 1 is plainly prime,
say p. But (N + 1)/p 6 N , so is either equal to 1, or else by hypothesis is a
product of prime numbers. Then N + 1 is also a product of prime numbers.
Consequently, by induction, we find that all integers exceeding 1 are a product
of prime numbers. �

Given a factorisation of an integer n into prime numbers, one may collect
together like primes and order the primes by size so as to give a factorisation

n = ±
s∏
i=1

prii ,

where p1 < p2 < · · · < ps are prime numbers, and ri ∈ N (1 6 i 6 s).
We will call this the canonical prime factorisation of n. Note that the empty
product of (no) primes is equal to 1. If the choice of sign, the primes pi,
and the exponents ri, are uniquely determined, we say that n has a unique
factorisation into primes.

Lemma 3.3. Suppose that p is a prime number, and p|a1 . . . at. Then p|ai for
some i with 1 6 i 6 t.

Proof. We prove first that if m and n are natural numbers and p|mn, then
p|m or p|n. For if p - m, then (p,m) = 1, and then it follows from Theorem
2.13 that p|n. Moving now to the general case, the latter argument shows that
when p|a1 . . . at, then either p|a1 or p|a2 . . . at. The conclusion of the lemma
therefore follows by induction on t. �

Theorem 3.4 (The Fundamental Theorem of Arithmetic). Positive integers
n > 1 have unique factorisations into primes.

Proof. Suppose, by way of deriving a contradiction, that n > 1 is the smallest
natural number that fails to have a unique factorisation into primes. Let p
be a prime factor of n. It follows from Lemma 3.3 that all factorisations of
n contain p as one of the prime factors. One cannot have p = n, since then



10 TREVOR D. WOOLEY

n factors uniquely into primes. Consequently, the integer n0 = n/p satisfies
1 < n0 < n, and hence possesses a unique factorisation into primes. But
then n = pn0 likewise has a unique factorisation into primes, contradicting our
opening hypothesis. It therefore follows that all positive integers n > 1 have a
unique factorisation into primes. �

Remark 3.5. The unique factorisation theorem enables one to determine great-
est common divisors and least common multiples simply. At least, that is the
case when prime factorisations are available, which is computationally expen-
sive data to assemble (the Euclidean Algorithm, on the other hand, is compu-
tationally very cheap). Suppose that

a =
s∏
i=1

prii and b =
s∏
i=1

ptii ,

with the pi distinct prime numbers and the exponents ri and ti non-negative
integers. Then on has

(a, b) =
s∏
i=1

p
min{ri,ti}
i and [a, b] =

s∏
i=1

p
max{ri,ti}
i .

Moreover, since min{ri, ti} + max{ri, ti} = ri + ti, it follows from the latter
formulae that (a, b)[a, b] = |ab|, as has already been established in Theorem
2.19(ii).

Theorem 3.6 (Euclid). There are infinitely many prime numbers, and hence
also arbitrarily large prime numbers.

Proof. Suppose to the contrary that there are only finitely many prime num-
bers, say p1, . . . , pn. None of p1, . . . , pn divides the auxiliary integer Qn =
p1 . . . pn + 1, so either Qn is itself prime, or else it is divisible by a prime differ-
ent from p1, . . . , pn. This yields a contradiction, and the theorem follows. �

Note that, writing pn for the n-th prime number, the expression p1p2 . . . pn+1
is not always prime. Thus, for example, we have 2 · 3 · . . . · 13 + 1 = 30031 =
59 · 509. It is conjectured that, starting with q1 = 2, if one defines qn+1 to be
the least prime divisor of the integer q1 . . . qn+1, then the sequence (qn) should
consist of all the prime numbers. A forthcoming homework exercise proves a
result related to this conjecture. Thus, writing pn for the n-th prime, one can
prove that pn+1 is the smallest prime divisor of the integer

(p1 . . . pn)(p1...pn)
(p1...pn)

− 1.

Theorem 3.7. The n-th smallest prime number pn satisfies pn < 22n.

Proof. Since p1 = 2, the conclusion claimed in the theorem holds for n = 1.
Suppose that N is a natural number, and that the conclusion holds when
1 6 n 6 N . Then by the argument of the proof of Theorem 3.6, one finds that

pN+1 6 p1p2 . . . pN + 1 < 221222 . . . 22N + 1 < 22N+1−1 + 1 < 22N+1

.
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Then the conclusion holds also for N +1, and so the desired conclusion follows
by induction. �

Now define the function π(x) for positive numbers x by putting

π(x) =
∑
p6x

p prime

1.

Thus one has π(2) = 1, π(3) = 2, π(
√

10) = 2, and so on.

Corollary 3.8. One has π(x) > log log x for x > 2.

Proof. One can verify this assertion using the conclusion of Theorem 3.7. �

The “exercise” at the end of this section shows that there are constants c1
and c2 with 0 < c1 < 1 < c2 such that for each number x with x > 2, one has

c1x/ log x 6 π(x) 6 c2x/ log x.

In fact, using complex analysis and the Riemann zeta function

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1,

on can prove that

π(x) ∼ x/ log x, as x→∞.
This asymptotic formula was proved by Hadamard and de la Vallée Poussin
in 1896 (for a detailed account of this work, see E. C. Titchmarsh, The the-
ory of the Riemann zeta- function. Second edition. Edited and with a pref-
ace by D. R. Heath-Brown. The Clarendon Press, Oxford University Press,
Oxford, 1986). Thus the nth prime number has size about n log n. One
of the list of 7 Millenial Problems proposed by the Clay Mathematics In-
stitute is the resolution of the Riemann Hypothesis, which asserts that the
analytic continuation of ζ(s) to the complex plane has, aside from the triv-
ial zeros at s = −2, −4, ..., only zeros on the half-line Re(s) = 1/2 (see
http://www.claymath.org/millennium). An accessible conclusion equivalent
to this assertion is that a positive number C exists for which the upper bound∣∣∣∣π(x)−

∫ x

2

dt

log t

∣∣∣∣ < Cx1/2(log x)1000000

holds for x > 2. The sharpest unconditional result in this direction has the
function

x exp
(
−A(log x)3/5(log log x)−1/5

)
in place of x1/2(log x)1000000, wherein A is a suitable positive constant. This
was proved independently by I. M. Vinogradov and Korobov in 1958 (see the
book by Titchmarsh for an account of this work).

Given an interesting sequence such as the prime numbers, number theo-
rists are interested in analysing features of their distribution. We begin with
arithmetic progressions, about which we will say more as the course progresses.
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Theorem 3.9. There are infinitely many prime numbers of the shape 4k + 3,
with k a non-negative integer.

Proof. Suppose that there are only finitely many prime numbers of the shape
4k+ 3 with k > 0, say p1, . . . , pn. Consider the integer Q = 4p1 . . . pn− 1. The
integer Q is odd, and of the shape 4k + 3, so cannot be divisible exclusively
by primes of the shape 4k + 1. Moreover, none of the primes p1, . . . , pn divide
Q. Thus Q is divisible by a new prime of the shape 4k + 3 not amongst
p1, . . . , pn, contradicting our initial hypothesis. This completes the proof of
the theorem. �

One can imitate the above proof to show that there are infinitely many prime
numbers of the shape 6k + 5 (k ∈ N). But the corresponding proof for 4k + 1
is not so easy. What about proving that there are infinitely many primes of
the shape 5k+ 4? See a forthcoming homework problem for a proof that there
are infinitely many prime numbers of the shape 4k + 1 (k ∈ N).

At the time of writing, the largest known prime is 282589933 − 1, a number
with 24862048 decimal digits. The primality of this number was established
through the efforts of GIMPS (see Great Internet Mersenne Prime Search, at
http://www.mersenne.org/) on 7th December 2018. One can check that the
integer 2n − 1 can be prime only when n is prime (why?). The integers 2p − 1
with p a prime number are known as Mersenne primes, and an industry of
efficient primality tests for these special numbers is reflected in the GIMPS
effort. On the other hand, it is conjectured that there are only finitely many
Fermat primes, that is to say, integers of the shape 22n + 1 which are prime
numbers. These integers are known to be prime for n = 0, 1, 2, 3, 4, and at the
time of writing known to be composite for 5 6 n 6 32.

Now we consider gaps between consecutive prime numbers.

Theorem 3.10. There are arbitrarily large gaps between consecutive prime
numbers.

Proof. Consider the sequence n! + 2, n! + 3, ..., n! + n of n − 1 consecutive
integers. The first of these integers is divisible by 2, the second by 3, and so on,
with the last divisible by n. None of these integers can be prime, therefore, and
so there are gaps of length at least n− 1, for any natural number n, between
consecutive prime numbers. �

This theorem shows that one can find gaps between consective primes pn
and pn+1 at least as large as C log pn/ log log pn, for a suitable positive constant
C, infinitely often. It was shown in December 2014 by Ford, Green, Konyagin,
Maynard and Tao that there is a positive number C with the property that
the gaps can be as large as

C
(log pn)(log log pn)(log log log log pn)

log log log pn

infinitely often (see arXiv:1412.5029). On the other hand, in July 2014 the
mathematics consortium D. H. J. Polymath, led by Terry Tao, has built on the
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pivotal work of Yitang Zhang and James Maynard to prove that pn+1−pn 6 246
infinitely often (see arXiv:1407.4897), thus providing an approximation to the
Twin Prime Conjecture that pn+1 − pn = 2 infinitely often.

A natural question is whether there are simple ways to produce prime num-
bers. The next theorem shows that polynomials, at least, cannot take prime
values all the time.

Theorem 3.11. There is no non-constant polynomial which takes only prime
values.

Proof. Suppose that f(t) is a polynomial with integral coefficients. Then for
every pair of large integers n and m, an examination of the Taylor expansion
reveals that f(n) is a proper divisor of f(n + mf(n)) exceeding 1. Thus we
see that f(n+mf(n)) is composite. �

Matijasevich showed in 1970 that there exist polynomials f(n1, . . . , nk), all
of whose positive values are prime numbers, and indeed such polynomials exist
in 12 variables. Moreover, there are infinitely many prime numbers of the shape
x2 + y4 (Friedlander and Iwaniec, 1998; see J. B. Friedlander and H. Iwaniec,
The polynomial X2 + Y 4 captures its primes. Ann. of Math. (2) 148 (1998),
945–1040), and also of the form x3+2y3 (Heath-Brown, 2001; see D. R. Heath-
Brown, Primes represented by x3 + 2y3. Acta Math. 186 (2001), 1–84). For
linear polynomials, much more is known, as we shall see later in the course.
When a and b are natural numbers with (a, b) = 1, Dirichlet proved that an+b
is prime for infinitely many integers n (this was proved in 1830).

Adventurous students may wish to follow the steps below to obtain infor-
mation about the asymptotic behaviour of π(x) previously advertised:

(a) For each n > 1, and each prime p, prove that ph‖n!, where h =
∑∞

m=1bn/pmc,
and bzc denotes max{n ∈ Z : n 6 z}.
(b) Prove that, for each x ∈ R, we have bxc − 2bx/2c 6 1. Hence prove that∏

n<p62n

p divides (2n)!/(n!)2 divides
∏
p62n

prp (n > 2),

where rp is the largest integer such that prp 6 2n. Deduce that

(π(2n)− π(n)) log n 6 log
(
(2n)!/(n!)2

)
6 π(2n) log(2n).

(c) Prove that 2n 6 (2n)!/(n!)2 6 22n for n > 2. Deduce that there are
constants c1, c2 > 0 such that π(n) > c1n/ log n and π(2n)−π(n) < c2n/ log n.

(d) Deduce from part (c) that when y > 2, there is a constant c3 > 0 such
that π(y)−π(y/2) < c3y/ log y. Infer that there is a constant c4 > 0 such that
π(y) log y − π(y/2) log(y/2) < c4y.

(e) Apply the last inequality with y = x/2m to show that when m > 0 and
2m 6 x/2, one has π(x) < c5x/ log x for a constant c5 > 0. Infer from part (c)
that for x > 2, one has π(x) > c6x/ log x for a suitable constant c6 > 0. Hence
there are constants c5 > 0 and c6 > 0 for which c6x/ log x < π(x) < c5x/ log x.
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4. Congruences

We begin by introducing some definitions and elementary properties.

Definition 4.1. Suppose that a, b ∈ Z and n ∈ N. We say that a is congruent
to b modulo n, and write a ≡ b (mod n), when n|(a− b).
We say that a is not congruent to b modulo n, and write a 6≡ b (mod n),
when n - (a− b).

Theorem 4.2. Let a, b, c, d be integers. Then

(i) a ≡ b (mod m) ⇐⇒ b ≡ a (mod m) ⇐⇒ a− b ≡ 0 (mod m);

(ii) a ≡ b (mod m) and b ≡ c (mod m)⇒ a ≡ c (mod m);

(iii) a ≡ b (mod m) and c ≡ d (mod m) ⇒ a + c ≡ b + d (mod m) and ac ≡
bd (mod m);

(iv) If a ≡ b (mod m) and d|m with d > 0, then a ≡ b (mod d);

(v) If a ≡ b (mod m) and c > 0, then ac ≡ bc (mod mc).

Proof. Try this as an exercise. You can check that congruence modulo m is
an equivalence relation on Z, and the ring properties of Z are preserved under
congruence modulo m. �

Corollary 4.3. When p(t) is a polynomial with integral coefficients, it follows
that whenever a ≡ b (mod m), then p(a) ≡ p(b) (mod m).

Proof. Use induction to establish that whenever a ≡ b (mod m), then ai ≡
bi (mod m) for each i ∈ N. �

The next theorem indicates how factors may be cancelled through congru-
ences.

Theorem 4.4. Let a, x, y ∈ Z and m ∈ N. Then

(i) ax ≡ ay (mod m) ⇐⇒ x ≡ y (mod m/(a,m));

(ii) If ax ≡ ay (mod m) and (a,m) = 1, then x ≡ y (mod m);

(iii) x ≡ y (mod mi) (1 6 i 6 r) ⇐⇒ x ≡ y (mod [m1, . . . ,mr]).

Proof. Observe first that when (a,m) = 1, then m|a(x − y) ⇐⇒ m|(x − y).
Then the conclusion of part (ii) follows, and this also delivers part (i) whenever
(a,m) = 1. When (a,m) > 1, on the other hand, one does at least have
(a/(a,m),m/(a,m)) = 1, so that

m|a(x− y) ⇐⇒ m

(a,m)

∣∣∣∣ a

(a,m)
(x− y) ⇐⇒ m

(a,m)

∣∣∣∣ (x− y).

This establishes the conclusion of part (i) of the theorem.

We now consider part (iii) of the theorem. Observe first that whenever
mi|(x − y) for (1 6 i 6 r), then [m1, . . . ,mr]|(x − y). On the other hand, if
[m1, . . . ,mr]|(x − y), then mi|(x − y) for (1 6 i 6 r). The conclusion of part
(iii) is now immediate. �

Now we examine the set of equivalence classes with respect to congruence
modulo m.
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Definition 4.5. (i) If x ≡ y (mod m), then y is called a residue of x modulo
m;

(ii) We say that {x1, . . . , xm} is a complete residue system modulo m if for
each y ∈ Z, there exists a unique xi with y ≡ xi (mod m);

(iii) The set of integers x with x ≡ a (mod m) is called the residue class, or
congruence class, of a modulo m.

We also wish to consider residue classes containing integers coprime to the
modulus, and this prompts the following observation.

Theorem 4.6. Whenever b ≡ c (mod m), one has (b,m) = (c,m).

Proof. If b ≡ c (mod m), then m|(b− c), whence there exists an integer x with
b = c+mx. But then (b,m) = (c+mx,m) = (c,m), as desired. �

Definition 4.7. (i) A reduced residue system modulo m is a set of integers
r1, . . . , rn satisfying (a) (ri,m) = 1 for 1 6 i 6 n, (b) ri 6≡ rj (mod m) for
i 6= j, and (c) whenever (x,m) = 1, then x ≡ ri (mod m) for some i with
1 6 i 6 n;

(ii) The number of elements in a reduced residue system modulo m is denoted
by φ(m) (Euler’s totient, or Euler’s φ-function).

Theorem 4.8. The number φ(m) is equal to the number of integers n with
1 6 n 6 m and (n,m) = 1.

Proof. This is immediate from the definition of the Euler totient. �

Theorem 4.9. Suppose that (a,m) = 1. Then whenever {r1, . . . , rn} is a com-
plete (respectively, reduced) residue system modulo m, the set {ar1, . . . , arn} is
also a complete (respectively, reduced) residue system modulo m.

Proof. When (a,m) = 1, it follows from Theorem 4.4(ii) that

ari ≡ arj (mod m) ⇐⇒ ri ≡ rj (mod m).

Hence the sets {r1, . . . , rn} and {ar1, . . . , arn} are in bijective correspondence.
Thus {ar1, . . . , arn} must be a complete residue system whenever {r1, . . . , rn}
is such (because these sets have the same number of elements). Moreover,
since (a,m) = 1, it follows that whenever (ri,m) = 1 one has (ari,m) = 1,
and so each element ari is a reduced residue. Since the two sets in question
have the same number of elements, we find that whenever {r1, . . . , rn} is a
reduced residue system, then so is {ar1, . . . , arn}. �

Theorem 4.10 (Euler, 1760). If (a, n) = 1, then aφ(n) ≡ 1 (mod n).

Proof. Let {r1, r2, . . . , rφ(n)} be any reduced residue system modulo n, and
suppose that (a, n) = 1. By Theorem 4.9, the system {ar1, . . . , arφ(n)} is
also a reduced residue system modulo n. Then there is a permutation σ of
{1, 2, . . . , φ(n)} with the property that ri ≡ arσi (mod n) (1 6 i 6 φ(n)).
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Consequently, one has

φ(n)∏
i=1

ri ≡
φ(n)∏
i=1

(arσi) ≡
φ(n)∏
j=1

(arj) ≡ aφ(n)
φ(n)∏
j=1

rj (mod n).

But (r1 . . . rφ(n), n) = 1, and thus aφ(n) ≡ 1 (mod n). �

Corollary 4.11 (Fermat’s Little Theorem, 1640). Let p be a prime number,
and suppose that (a, p) = 1. Then one has ap−1 ≡ 1 (mod p). Meanwhile, for
all integers a one has ap ≡ a (mod p).

Proof. Note that the set {1, 2, . . . , p− 1} is a reduced residue system modulo
p. Thus φ(p) = p− 1, and the first part of the theorem follows from Theorem
4.10. When (a, p) = 1, the second part of the theorem is immediate from the
first part. Meanwhile, if (a, p) > 1, one has p|a, and then one plainly has
ap ≡ a (mod p). This completes the proof of the theorem. �

Fermat’s Little Theorem, and Euler’s Theorem, ensure that the computation
of powers is very efficient modulo p (or modulo m).

Example 4.12. Compute 52023 (mod 41). Observe first that φ(41) = 40, and
so it follows from Fermat’s Little Theorem that 540 ≡ 1 (mod 41), and hence

52023 = (540)50523 ≡ 523 (mod 41).

Note next that powers which are themselves powers of 2 are easy to compute
by repeated squaring (the “divide and conquer” algorithm). Thus one finds
that 52 ≡ 25 ≡ −16 (mod 41), 54 = (52)2 ≡ (−16)2 ≡ 10 (mod 41), 58 ≡
(54)2 ≡ (10)2 ≡ 18 (mod 41), 516 ≡ (58)2 ≡ 182 ≡ 324 ≡ −4 (mod 41). In this
way we deduce that

52023 ≡ 516 · 54 · 52 · 51 ≡ (−4) · 10 · (−16) · 5 ≡ 3200 ≡ −80 ≡ 2 (mod 41).

The strategy of computing power of 2 powers of residues is one that is
effective in general. The residue of ar (mod m) may be computed by writing
the base 2 expansion of r, computing the relevant power of 2 powers that occur
in this binary expansion by repeated squaring, and then multiplying together
to obtain the rth power.

Euler’s Theorem provides one (rather inefficient) method of computing mul-
tiplicative inverses modulo m. An efficient method is based on the Euclidean
Algorithm.

Theorem 4.13. Suppose that (a,m) = 1. Then there exists an integer x with
the property that ax ≡ 1 (mod m). If x1 and x2 are any two such integers,
then x1 ≡ x2 (mod m). Also, if (a,m) > 1, then there exists no integer x with
ax ≡ 1 (mod m).

Proof. Suppose that (a,m) = 1. Then by the Euclidean Algorithm, there exist
integers x and y such that ax+my = 1, whence ax ≡ 1 (mod m). Meanwhile,
if ax1 ≡ 1 ≡ ax2 (mod m), then a(x1 − x2) ≡ 0 (mod m). But (a,m) = 1,
and thus x1 − x2 ≡ 0 (mod m). We have therefore established both existence
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and uniqueness of the multiplicative inverse for residues a with (a,m) = 1.
If (a,m) > 1, then (ax,m) > 1 for every integer x. But if one were to have
ax ≡ 1 (mod m), then (ax,m) = (1,m) = 1, which yields a contradiction.
This establishes the last part of the theorem. �

We have just shown that the congruence classes of a reduced residue system
modulo m form a group under multiplication modulo m.

Theorem 4.14 (Wilson’s Theorem; Waring 1770, Lagrange). For each prime
number p, one has (p− 1)! ≡ −1 (mod p).

Proof. The proof for p = 2 and 3 is immediate, so suppose henceforth that p
is a prime number with p > 5. Observe that when 1 6 a 6 p − 1, one has
(a, p) = 1, so there exists an integer a unique modulo p with aa ≡ 1 (mod p).
Moreover, there is no loss in supposing that a satisfies 1 6 a 6 p − 1, and
then a is a uniquely defined integer. We may now pair off the integers a
with 1 6 a 6 p − 1 with their counterparts a with 1 6 a 6 p − 1, so that
aa ≡ 1 (mod p) for each pair. Note that a 6= a so long as a2 6≡ 1 (mod p).
But a2 ≡ 1 (mod p) if and only if (a − 1)(a + 1) ≡ 0 (mod p), and the latter
is possible only when a ≡ ±1 (mod p). Thus we find that

p−2∏
a=2

a =
∏
a

(aa) ≡ 1 (mod p),

whence
p−1∏
a=1

a ≡ (p− 1) ≡ −1 (mod p).

�

Notice that when m is a composite integer exceeding 4, then the product
expansion of (m − 1)! necessarily contains two factors a and b with m|ab,
whence one has (m− 1)! ≡ 0 (mod m). Wilson’s Theorem therefore provides
the world’s worst primality test. On the other hand, the proof of Wilson’s
Theorem does motivate a proof of a criterion for the solubility of the congruence
x2 ≡ −1 (mod p).

Theorem 4.15. When p = 2, or when p is a prime number with p ≡ 1 (mod 4),
the congruence x2 ≡ −1 (mod p) is soluble. When p ≡ 3 (mod 4), the latter
congruence is not soluble.

Proof. When p = 2, the conclusion is clear. Assume next that p ≡ 1 (mod 4),
and write r = (p− 1)/2 and x = r!. Then since r is even, one has

x2 ≡ (1 · 2 · · · · · r)((p− 1) · (p− 2) · · · · · (p− r)) ≡ (p− 1)! ≡ −1 (mod p).

Thus, when p ≡ 1 (mod 4), the congruence x2 ≡ −1 (mod p) is indeed solu-
ble. Suppose then that p ≡ 3 (mod 4). If it were possible that an integer x
exists with x2 ≡ −1 (mod p), then one finds that (x2)(p−1)/2 ≡ (−1)(p−1)/2 ≡
−1 (mod p), yet by Fermat’s Little Theorem, one has (x2)(p−1)/2 = xp−1 ≡
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1 (mod p) whenever (x, p) = 1. We therefore arrive at a contradiction, and
this completes the proof of the theorem. �

The observation that −1 is not a square modulo p when p ≡ 3 (mod 4) can
be exploited to provide simple irrationality proofs.

Theorem 4.16.
√

2 is irrational.

Proof. Suppose that
√

2 is rational, so there exist x ∈ Z and y ∈ N with
(x, y) = 1 such that (x/y)2 = 2. Then x2 = 2y2, so that in particular one has
x2 ≡ 2y2 ≡ −y2 (mod 3). But since 12 ≡ 22 ≡ 1 (mod 3) and 02 ≡ 0 (mod 3),
it follows that the congruence x2 ≡ −y2 (mod 3) is soluble only when 3|x and
3|y, and this contradicts the condition (x, y) = 1. We are therefore forced to
conclude that

√
2 is irrational. �

Proof. (Novelty version) Suppose that
√

2 is rational, and let k be the smallest
positive integer with k

√
2 ∈ Z. Then k

√
2 − k is a smaller such integer,

contradicting the minimality of k and establishing the corollary. �

It may be worth expanding on the last line of this proof. Since
√

2 may
be verified to lie between 1 and 2, and k

√
2 is supposed to be an integer, the

number k
√

2−k is a positive integer smaller than k. Moreover, since (
√

2)2 = 2
(it is here that the definition of

√
2 is used), one has (k

√
2−k)

√
2 = 2k−k

√
2,

and this is an integer because k
√

2 is again an integer. This is a proof that
has been “rediscovered” many times (see, for example, T. Estermann, The
irrationality of

√
2, Math. Gaz. (408) 59 (1975), 110).

5. The Chinese Remainder Theorem

We now seek to analyse the solubility of congruences by reinterpreting their
solutions modulo a composite integerm in terms of related congruences modulo
prime powers.

Theorem 5.1 (Chinese Remainder Theorem). Let m1, . . . ,mr denote positive
integers with (mi,mj) = 1 for i 6= j. Also, let a1, . . . , ar ∈ Z. Then the system
of congruences

x ≡ ai (mod mi) (1 6 i 6 r) (5.1)

is soluble simultaneously for some integer x. If x0 is any one such solution,
then x is a solution of (5.1) if and only if x ≡ x0 (mod m1m2 . . .mr).

Proof. Let m = m1m2 . . .mr, and nj = m/mj (1 6 j 6 r). Then for each j
with 1 6 j 6 r one has (mj, nj) = 1, whence by Theorem 4.13 there exists an
integer bj with njbj ≡ 1 (mod mj). Moreover,

njbj =

(
m1 . . .mr

mjmi

bj

)
mi ≡ 0 (mod mi)

whenever i 6= j. Then if we put x0 = n1b1a1 + · · · + nrbrar, we find that
x0 ≡ nibiai ≡ ai (mod mi) (1 6 i 6 r). Thus we may conclude that x0 is a
solution of (5.1).
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In order to establish uniqueness, suppose that x and y are any two solutions
of (5.1). Then one has x ≡ y (mod mi) (1 6 i 6 r) and (mi,mj) = 1 (i 6= j).
Then by Theorem 4.4(iii), it follows that x ≡ y (mod [m1, . . . ,mr]), and so
x ≡ y (mod m). �

Example 5.2. Find the set of solutions to the system of congruences

4x ≡ 1 (mod 3), x ≡ 2 (mod 5), 2x ≡ 5 (mod 7).

We first convert this into a form where the leading coefficients are all 1. Thus,
multiplying the final congruence through by 4 (the multiplicative inverse of 2
modulo 7), we obtain the equivalent system

x ≡ 1 (mod 3), x ≡ 2 (mod 5), x ≡ 6 (mod 7).

We next put m1 = 3, m2 = 5, m3 = 7, so that (mi,mj) = 1 for i 6= j. Define
m = 3 · 5 · 7 = 105, and n1 = 105/3 = 35, n2 = 105/5 = 21, n3 = 105/7 = 15.
We compute integers bj with njbj ≡ 1 (mod mj) (j = 1, 2, 3) by means of the
Euclidean Algorithm (or directly, if the numbers are small enough). Thus we
find that

35b1 ≡ 1 (mod 3)⇒ 2b1 ≡ 1 (mod 3)⇒ b1 ≡ 2 (mod 3),

21b2 ≡ 1 (mod 5)⇒ b2 ≡ 1 (mod 5),

15b3 ≡ 1 (mod 7)⇒ b3 ≡ 1 (mod 7).

So take

x0 = 35 · 2 · 1 + 21 · 1 · 2 + 15 · 1 · 6
= 70 + 42 + 90 = 202 ≡ 97 (mod 105).

Then we find that x0 = 97 satisfies the given congruences, and the complete
set of solutions is given by x = 97 + 105k (k ∈ Z).

Example 5.3. Find the set of solutions, if any, to the system of congruences

x ≡ 1 (mod 15), x ≡ 2 (mod 35).

In this example, the moduli of the two congruences are not coprime, since
(35, 15) = 5. In order to determine whether or not the system is soluble, we
therefore need to examine the underlying congruences, extracting as a modulus
this greatest common divisor. Thus we find that any potential solution x of
the system must satisfy

x ≡ 1 (mod 15) ⇒ x ≡ 1 (mod 3) and x ≡ 1 (mod 5),

and at the same time

x ≡ 2 (mod 35) ⇒ x ≡ 2 (mod 5) and x ≡ 2 (mod 7).

But then one has x ≡ 1 (mod 5) and x ≡ 2 (mod 5), two congruence condi-
tions that are plainly incompatible. We may conclude then that there are no so-
lutions of the simultaneous congruences x ≡ 1 (mod 15) and x ≡ 2 (mod 35).

We wish to investigate further the properties of the Euler totient, and so
pause to introduce the concept of a multiplicative function.
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Definition 5.4. (i) We say that a function f : N → C is an arithmetical
function;

(ii) An arithmetical function f is said to be multiplicative if (a) f is not
identically zero, and (b) whenever (m,n) = 1, one has f(mn) = f(m)f(n).

Note that if f(n) is multiplicative, then necessarily one has f(1) = 1 (Why?).

Theorem 5.5. The function φ(n) is multiplicative. Thus, whenever (m,n) =
1, one has φ(mn) = φ(m)φ(n). Moreover, if n has canonical prime factorisa-
tion

∏t
1 p

ri
i , then

φ(n) =
t∏
i=1

pri−1i (pi − 1) = n
∏
p|n

(1− 1/p).

Proof. Let n and n′ be natural numbers with (n, n′) = 1, and let a and a′

run through the reduced residues modulo n, and modulo n′ respectively. The
total number of choices for a and a′ is plainly φ(n)φ(n′). We examine the
integer an′ + a′n, and aim to show that this is a reduced residue modulo nn′,
and moreover that distinct choices for (a, a′) yield distinct values of an′ +
a′n (mod nn′). This shows that the number of reduced residues modulo nn′

is at least as large as the number of pairs (a, a′), which is to say that one has
φ(nn′) > φ(n)φ(n′).

Now, whenever (a, n) = (a′, n′) = 1, one has

(an′ + a′n, nn′)|n′(an′ + a′n, n) = n′(an′, n) = n′(a, n) = n′,

and likewise (an′+a′n, nn′)|n, whence (an′+a′n, nn′)|(n, n′) = 1. We therefore
deduce that (an′ + a′n, nn′) = 1, and so any integer of the shape an′ + a′n,
with (a, n) = (a′, n′) = 1, is a reduced residue modulo nn′. But any two
distinct numbers of the latter form are incongruent modulo nn′, for if (ai, n) =
(a′i, n

′) = 1 (i = 1, 2), and

a1n
′ + a′1n ≡ a2n

′ + a′2n (mod nn′),

then

(a1 − a2)n′ ≡ 0 (mod n) ⇒ a1 ≡ a2 (mod n),

and similarly a′1 ≡ a′2 (mod n′). Thus we obtain a1 = a2 and a′1 = a′2. Distinct
choices for (a, a′) do indeed lead to distinct values of an′ + a′n (mod nn′),
therefore, and we have achieved the objectives described in the first paragraph
of our proof.

We next seek to establish that whenever (b, nn′) = 1, then there exist re-
duced residues a modulo n and a′ modulo n′ with b ≡ an′+a′n (mod nn′). But
(n, n′) = 1, so by the Euclidean Algorithm, there exist integers m and m′ with
mn′ + m′n = 1. Now (m,n) = (m′, n′) = 1, and so (bm, n) = (bm′, n′) = 1,
and thus there exist integers a and a′ with (a, n) = (a′, n′) = 1 satisfying
an′ + a′n = b, namely a = bm and a′ = bm′. It therefore follows that the
number of pairs (a, a′) with a a reduced residue modulo n, and a′ a reduced
residue modulo n′, cannot be smaller than the number of reduced residues



NUMBER THEORY 21

modulo nn′. This establishes that φ(nn′) 6 φ(n)φ(n′). Together with the in-
equality φ(nn′) > φ(n)φ(n′) that we established earlier, this yields the relation
φ(nn′) = φ(n)φ(n′) whenever (n, n′) = 1. Then the Euler totient is indeed a
multiplicative function.

In order to complete the proof of the theorem, we observe next that when
p is a prime number, one has φ(pr) = pr − pr−1, since the total number of
residues modulo pr is pr, of which precisely the pr−1 divisible by p are not
reduced. In this way, the final assertions of the theorem follow by making use
of the multiplicative property of φ(·). �

Useful properties of φ(n) that will be employed later stem easily from its
multiplicative property. Before establishing one such property, we establish a
general result for multiplicative functions.

Lemma 5.6. Suppose that f(n) is multiplicative, and define g(n) =
∑

d|n f(d).

Then g(n) is a multiplicative function.

Proof. Suppose that n and m are natural numbers with (n,m) = 1, and sup-
pose that d|mn. Write d1 = (d,m) and d2 = (d, n). Then d = d1d2 and
(d1, d2) = 1. Thus we obtain

g(mn) =
∑
d|mn

f(d) =
∑
d1|m

∑
d2|n

f(d1d2) =

∑
d1|m

f(d1)

∑
d2|n

f(d2)

 ,

whence g(mn) = g(m)g(n). This completes the proof that g is multiplicative.
�

Corollary 5.7. One has
∑

d|n φ(d) = n.

Proof. Observe that for each prime number p, and every natural number r,
one has ∑

d|pr
φ(d) =

r∑
h=0

φ(ph) = 1 +
r∑

h=1

(ph − ph−1) = pr.

Thus, owing to the multiplicative property of φ established in Theorem 5.5,
it follows from Lemma 5.6 that

∑
d|n φ(d) is a multiplicative function of n,

whence ∑
d|n

φ(d) =
∏
pr‖n

∑
d|pr

φ(d)

 =
∏
pr‖n

pr = n.

�

To conclude this section, we examine the set of solutions of a polynomial
congruence.

Definition 5.8. Let f(x) ∈ Z[x], and suppose that r1, . . . , rm is a complete
residue system modulo m. Then we say that the number of solutions of
the congruence f(x) ≡ 0 (mod m) is the number of residues ri with f(ri) ≡
0 (mod m).
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Definition 5.9. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a0 be a polynomial with
integral coefficients. Let j be the largest integer with m - aj. Then we say
that the degree of f modulo m is j. If m|aj for every j, then the degree of f
is undefined.

Theorem 5.10. Suppose that f(x) ∈ Z[x], and denote by Nf (m) the number of
solutions of the congruence f(x) ≡ 0 (mod m). Then Nf (m) is a multiplicative
function of m, and

Nf (m) =
∏
pr‖m

Nf (p
r).

Proof. Suppose that m1 and m2 are natural numbers with m = m1m2 and
(m1,m2) = 1. Whenever f(a) ≡ 0 (mod m), one has also f(a) ≡ 0 (mod m1)
and f(a) ≡ 0 (mod m2). Then if {r1, . . . , rm1} and {s1, . . . , sm2} are complete
residue systems modulo m1 and m2, respectively, one finds that for each integer
a with f(a) ≡ 0 (mod m) belonging to a complete residue system modulo m,
there exist unique ri and sj with f(ri) ≡ 0 (mod m1) and f(sj) ≡ 0 (mod m2).
Moreover, the residue a modulo m1m2 satisfying a ≡ ri (mod m1) and a ≡ sj
(mod m2) is uniquely defined, as a consequence of the Chinese Remainder
Theorem. Thus there is an injective map from the set of solutions modulo m
to the set of pairs of solutions modulo m1 and m2.

In the other direction, whenever there exist residues ri and sj with f(ri) ≡ 0
(mod m1) and f(sj) ≡ 0 (mod m2), then by the Chinese Remainder Theorem
there exists an integer a with a ≡ ri (mod m1) and a ≡ sj (mod m2) such that
f(a) ≡ 0 (mod mi) (i = 1, 2), and moreover the integer a uniquely defines ri
modulo m1 and sj modulo m2. But since (m1,m2) = 1, it follows that f(a) ≡ 0
(mod m1m2), whence f(a) ≡ 0 (mod m). There is therefore an injective map
from pairs of solutions (ri, sj) modulo m1 and m2 respectively, to solutions
modulo m.

Collecting together the above conclusions, we find that the solutions modulo
m, and pairs of solutions modulo m1 and m2, are in bijective correspondence,
whence Nf (m) = Nf (m1)Nf (m2) whenever (m1,m2) = 1. The desired conclu-
sion now follows on considering the prime factorisation of m. �

6. Public-Key Cryptography: the RSA cryptosystem
[Non-examinable]

Suppose that Alice wishes to securely send a message to Bob, avoiding Eve
malevolently deciphering this message. Say the message is:

“Do not spill the beans”

How do we achieve secure communication? We will provide a sketch of the
RSA cryptosystem, described by Rivest, Shamir and Adleman in 1977, and
patented in the USA in 19831.

1See R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems. Comm. ACM 21 (1978), 120–126. There is an interesting
history to the RSA cryptosystem: Cliff Cocks at GCHQ devised such a method in 1973,
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Step 1: Bob publishes a pair of integers N , r (the Public Key).

As the latter name suggests, these integers are in the public domain and can
be used by anyone (including Alice) to communicate securely with Bob. Bob
obtains these two integers as follows. He picks two large primes p and q in
an essentially random manner, with p 6= q. In practice, one should choose
these primes to have 150 - 200 digits, but in order to illustrate ideas, we’ll take
p = 257 and q = 8191. The number N is then taken to be pq = 2 105 087.
Bob keeps the identity of these two primes secret. It is only the product
N which is put into the public domain. The second integer r is chosen by
Bob to be a natural number coprime to φ(N) that is not too small. Notice
that since Bob knows the prime factorisation of N , he is able to compute
φ(N) = (p − 1)(q − 1) quickly, and hence obtain a suitable integer r by trial
and error using the Euclidean Algorithm. In this discussion we take r = 139.
Thus the Public Key is (2 105 087, 139).

Step 2: Alice now needs to code her message into a numerical expression in
a standard manner. Obvious choices for a suitable scheme include the ASCII
scheme (which also offers the possibility of encoding punctuation symbols and
so on). For simplicity, we’ll encode “A” as “01”, “B” as “02”, ..., “Z” as “26”,
and “space” as “27”. Thus Alice’s message is encoded as

04|15|27|14|15|20|27|19|16|09|12|12|27|20|08|05|27|02|05|01|14|19

Alice now needs to break this string of numbers up into smaller substrings that
can be encrypted using Bob’s public key. Since N has seven digits, this entails
breaking the message into substrings having six digits apiece. The message
becomes a1a2 . . . a8, where

a1 = 041527, a2 = 141520, a3 = 271916, a4 = 091212,

a5 = 272008, a6 = 052702, a7 = 050114, a8 = 198888.

Notice here that the last substring a8 has been padded with the digit 8 to boost
it to the correct length. The question of appropriate padding schemes is one of
some subtlety if security is to be preserved. Alice now computes the residues
bi ≡ ari (mod N) efficiently by using the “divide-and-conquer” algorithm for
1 6 i 6 8.

Step 3: Alice may now send Bob the message b1b2 . . . b8, where

b1 = 0994340, b2 = 0128098, b3 = 1608212, b4 = 0600447,

b5 = 1096537, b6 = 0305539, b7 = 0137494, b8 = 1528105.

Step 4: Bob now needs to decode the message, but because he knows the two
primes p and q for which N = pq, he can compute

φ(N) = φ(pq) = (p− 1)(q − 1) = 2 096 640.

Eve cannot compute φ(N) easily without knowing p and q. Thus Bob can find
an integer s such that sr ≡ 1 (mod φ(N)), say sr−1 = −kφ(N), for a suitable

though owing to the secrecy of GCHQ operations, this information became publicly available
only in 1997.
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integer k. One can compute this number s by using the Euclidean Algorithm
to solve the linear equation xr + φ(N)y = 1. Thus Bob solves the equation

139s+ 2 096 640t = 1.

One may verify that (s, t) = (1 689 379,−112) solves this equation. Of course,
Bob only needs to solve this equation once so long as he stores the Private
Key (N, s) in a secure place. Now Bob computes the residues bsi (mod N) for
1 6 i 6 8 in order to recover the original message a1a2 . . . a8, that is

04|15|27|14|15|20|27|19|16|09|12|12|27|20|08|05|27|02|05|01|14|19|88|88

complete with padding at the end. Bob may then of course decode the message
sing the transparent coding scheme to obtain “DO NOT SPILL THE BEANS”.

Observation 6.1. One has bsi ≡ ai (mod N) for each i.

Proof. Suppose first that (ai, N) = 1. Then it follows from Euler’s Theorem
that

bsi ≡ arsi ≡ arsi (a
φ(N)
i )k = a

rs+kφ(N)
i ≡ a1i (mod N).

Moreover, since N = pq, it follows that when (ai, N) 6= 1, then one has
(ai, N) = p, q or pq. In the latter case, we have ai = pq = N , and then the
conclusion is trivial. Suppose then that (ai, N) = p, so that p|ai and (ai, q) = 1.
In this situation the former condition yields

bsi ≡ arsi ≡ 0 ≡ ai (mod p),

and in view of Fermat’s Little theorem, the latter yields

bsi = arsi (aq−1i )k(p−1) = a
rs+kφ(N)
i ≡ a1i (mod q).

Thus bsi ≡ ai (mod p) and bsi ≡ ai (mod q), whence bsi ≡ a (mod pq). The
situation in which (ai, N) = q may be analysed in like manner, and so this
completes the proof. �

One could argue, of course, that to send a message that contains a common
factor with N that yields the prime factorisation of N would be foolish, and
something to be avoided by using a suitable padding scheme.

It remains to discuss the feasibility and security of this cryptosystem. The
first observation to make is that all of the operations required to make use of
the RSA cryptosystem are fast. The application of the Euclidean Algorithm,
and the operation of taking powers modulo N , have running time O(logN)
arithmetic operations. This is proportional to the number of digits in N . Sec-
ond, we need to have available plenty of large prime numbers (p and q) in order
to derive good public keys. Fortunately, there are relatively fast primality tests
available. A probabilistic test is available with running time polynomial in log n
that can discern, provably, that a number n is composite. For the numbers that
survive this test, the Adleman-Pomerance-Rumely test can establish primality,
or compositeness, provably in deterministic time O((log n)c log log logn), which
is close to polynomial in log n. More recently, Agrawal, Kayal and Saxena
have devised an algorithm that has running time polynomial in log n. Finally,
the security of the RSA cryptosystem depends on the difficulty of factoring
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large integers. The naive factorisation algorithm supplies a factorisation of a
composite integer in running time O(

√
n) arithmetic operations. The fastest

available factorisation algorithm for very large integers is the Number Field
Sieve, with running time exp(c(log n)1/3(log log n)2/3) arithmetic operations to
factor a large integer n, wherein c is a suitably large positive constant. This
is much larger than polynomial in log n. If a quantum computer can be built,
then Shor’s Quantum Algorithm would factor integers n in a time polynomial
in log n, and would constitute a threat to the RSA cryptosystem.

Pollard’s rho-method [Non-examinable].

We briefly explore a factorisation algorithm that has running time significantly
faster than the naive one. Note first that on observing that a composite number
n = n1n2 has one factor at least smaller than

√
n, it is apparent that simply

by testing each possible factor smaller than
√
n, one obtains a factorisation

algorithm with running time O(
√
n). Pollard’s rho-method, which we now

describe, has expected running time about O(n1/4).

Suppose that n is a large composite number with smallest prime divisor p.
Choose k to be large compared to

√
p, say k = 10n1/4, and choose k integers

u1, . . . , uk by some “random” (or rather, quasi-random) process. Then with
high probability, the ui are distinct modulo n. The probability that two ui are
mutually congruent modulo p is 1 − π, where π is the probability that they
are all distinct. But

π ≈
(

1− 1

p

)(
1− 2

p

)
. . .

(
1− k − 1

p

)
≈ exp

(
−1

p
− 2

p
− · · · − k − 1

p

)
≈ exp

(
−k(k − 1)

2p

)
.

But k = 10n1/4 > 10p1/2, so π is no larger than about e−50, which is micro-
scopic. Thus, almost certainly, one finds that there are two numbers ui and uj
with 1 < (ui − uj, n) < n, and hence we obtain a non-trivial factor of n.

We must now obtain a suitable pseudo-random sequence (ui) with which
to put this idea into effect. It transpires that when c 6= 0,−2, the sequence
generated with some initial good seed u0, and defined for i > 1 via the relation
ui+1 ≡ u2i + c (mod n), is pseudo-random. Notice here that we could omit
the reduction modulo n in the definition, but that taking the numerically least
residue offers computational advantages.

Example 6.2. Consider the integer n = 78 667. Make use of the pseudo-
random sequence defined by u0 = 3, ui+1 = u2i − 1 (mod n) to obtain a
factorisation of n.

One may compute that the sequence {ui (mod n)} is

{3, 8, 63, 3 968, 11 623, 22 889, 62 767, 52 928, 41 313, 4 736, 9 600, . . . },
and hence (u10 − u5, n) = 97, giving 78 667 = 97 · 811.
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This algorithm is only fast provided that we can detect the mutual con-
gruences efficiently. But using the polynomial pseudo-random generator, one
can proceed as follows. If ui ≡ uj (mod d) for some integer d with d|n, then
ui+1 ≡ u2i + c ≡ u2j + c ≡ uj+1 (mod d), and hence the sequence (ui) is
ultimately periodic modulo d, with period dividing j − i. Put r = j − i.
Then us ≡ ut (mod d) whenever s ≡ t (mod r) and s > i, t > i. Let s
be the least multiple of r exceeding i − 1, and take t = 2s. Then us ≡ u2s
(mod d). Consequently, amongst the numbers u2s − us, we expect to find
one with 1 < (u2s − us, n) < n, with s 6 10n1/4. One can of course com-
pute the pair (us, u2s) for successive values of s relatively efficiently. One has
(us+1, u2s+2) ≡ (u2s + c, (u22s + c)2 + c) (mod n), and so the expected running
time required to find a factorisation is O(n1/4). The name of the algorithm
then derives from the shape of a tree of the iterates, ultimately periodic modulo
n (see Figure 1).

7. Polynomial congruences to prime modulus

At this point we know that the number of solutions of a polynomial con-
gruence modulo m is a multiplicative function of m, and thus it suffices to
consider congruences modulo prime powers. We begin by investigating con-
gruences modulo p, for prime numbers p.

Theorem 7.1 (Lagrange). Let f(x) ∈ Z[x] have degree n (modulo p), with
n > 1. Then the congruence f(x) ≡ 0 (mod p) has at most n solutions.

Proof. The situation when n = 1 is clear, since we then have a linear equation
to solve. Suppose then that n > 2, and that the conclusion of the theorem
holds for all degrees smaller than n. Let f(x) ∈ Z[x] have degree n modulo p.
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Either f(x) has no zeros modulo p, or else there exists at least one zero, say
x = a. Let ga(x) be defined by means of the relation f(x)−f(a) = (x−a)ga(x).
By considering the polynomials (xm− am)/(x− a), it is apparent that ga(x) ∈
Z[x] and that ga(x) has degree n − 1 modulo p. It follows that whenever
f(x) ≡ 0 (mod p), one has either x ≡ a (mod p), or ga(x) ≡ 0 (mod p). But
by our inductive hypothesis, the number of zeros of ga(x) (mod p) is at most
deg ga = n − 1, and hence the number of zeros of f(x) (mod p) is at most
1 + (n− 1) = n. The desired conclusion therefore follows by induction. �

Note that from what we have already discussed, it follows that the set of
residues modulo p, namely Z/pZ, forms a field under addition and multipli-
cation modulo p. Then the above theorem is immediate from the standard
properties of fields.

Example 7.2. (i) It follows from Lagrange’s Theorem that the congruence
x2 + 1 ≡ 0 (mod p) has at most 2 solutions for any prime p. From Theorem
4.15, meanwhile, we know that this congruence has precisely 2 solutions when
p ≡ 1 (mod 4), and 0 solutions when p ≡ 3 (mod 4).

(ii) It follows from Lagrange’s Theorem that the congruence xp − x + 1 ≡ 0
(mod p) has at most p solutions modulo p. In fact this congruence has no
solutions for any prime p, as a consequence of Fermat’s Little Theorem (see
homework sheet 4).

(iii) There is no analogue of Lagrange’s Theorem for composite moduli. Con-
sider for example the congruence x2 ≡ 1 (mod 8). This is a congruence of
degree 2, yet has 4 distinct solutions 1, 3, 5 and 7 modulo 8.

Continuing the inductive argument of the proof of the last theorem, we
find that whenever a1, . . . , an are zeros of a polynomial f(x) (mod p), counted
with multiplicity, and f(x) has degree n modulo p, then there exists a non-zero
residue α (mod p) with the property that

f(x) ≡ α(x− a1)(x− a2) . . . (x− an) (mod p).

In particular, by Lagrange’s Theorem, the congruence xp−1 ≡ 1 (mod p) has
at most p− 1 solutions modulo p, and it follows from Fermat’s Little Theorem
that these are x = 1, 2, . . . , p− 1. Thus one obtains the relation

xp−1 − 1 ≡ (x− 1)(x− 2) . . . (x− p+ 1) (mod p).

Comparing coefficients of powers of x, we find from the constant coefficient in
this relation that (p − 1)! ≡ −1 (mod p). Moreover, on writing 1/n for the
multiplicative inverse of n modulo p, it follows by comparing the coefficients
of x that

(p− 1)!

(
1

1
+

1

2
+ · · ·+ 1

p− 1

)
≡ 0 (mod p),

whence

1 +
1

2
+ · · ·+ 1

p− 1
≡ 0 (mod p).



28 TREVOR D. WOOLEY

More is true. One can prove (Wolstenholme’s Theorem) that

1 +
1

2
+ · · ·+ 1

p− 1
≡ 0 (mod p2).

Corollary 7.3. Whenever d|(p− 1), the congruence xd ≡ 1 (mod p) has pre-
cisely d solutions modulo p.

Proof. Suppose that d|(p − 1). Then there exists a polynomial g(x) ∈ Z[x]
with xp−1−1 = (xd)(p−1)/d−1 = (xd−1)g(x). But the degree of g is p−1−d,
and so by Lagrange’s Theorem the congruence g(x) ≡ 0 (mod p) has at most
p − 1 − d solutions modulo p. Then since xp−1 − 1 has precisely p − 1 zeros
modulo p, we see from the above relation that xd − 1 has at least d zeros
modulo p. But Lagrange’s Theorem shows that the latter polynomial has at
most d zeros modulo p, and thus we see that it has precisely d zeros modulo
p. This completes the proof of the theorem. �

8. Congruences to prime power moduli

Although there is no analogue of Lagrange’s Theorem for prime power mod-
uli, there is an algorithm for determining when a solution modulo p gener-
ates solutions to higher power moduli. The motivation comes from Newton’s
method for approximating roots over the real numbers. We first present a
motivating example.

Example 8.1. Solve the congruence x3 + x+ 4 ≡ 0 (mod 73).

(I) We first solve the corresponding congruence modulo 7, since any solution x
modulo 73 must also satisfy x3 + x+ 4 ≡ 0 (mod 7). By an exhaustive search
(try x = 0, 1, 2, ..., 6), we find that the only solution is x ≡ 2 (mod 7).

(II) Next, we try to solve the corresponding congruence modulo 72, since any
solution x modulo 73 must also satisfy x3 +x+4 ≡ 0 (mod 72). But such solu-
tions must also satisfy the corresponding solution modulo 7, so x ≡ 2 (mod 7).
Then we put x = 2 + 7y and substitute. We need to solve

(2 + 7y)3 + (2 + 7y) + 4 ≡ 0 (mod 72).

Notice that when we use the Binomial Theorem to expand the cube, any terms
involving 72 or 73 can be ignored. Thus we need to solve

(23 + 3 · 22 · 7y) + (2 + 7y) + 4 = 14 + 13 · 7y ≡ 0 (mod 72),

or equivalently,

13y + 2 ≡ −y + 2 ≡ 0 (mod 7).

Then we put y = 2 and find that x = 2 + 7y = 16 satisfies the congruence
x3 + x+ 4 ≡ 0 (mod 72).

(III) We can now repeat the previous strategy (and in fact, we can repeat this
as many times as necessary). So we substitute x = 16 + 72z and solve for z to
obtain a solution modulo 73. Thus we need to solve

(16 + 72z)3 + (16 + 72z) + 4 ≡ (163 + 3 ·162 ·72z) + (16 + 72z) + 4 ≡ 0 (mod 73).
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But 163 + 16 + 4 is divisible by 72 (why do we know this?), and in fact is equal
to 84 · 72. Then we need to solve

84 · 72 + (3 · 162 + 1) · 72z ≡ 0 (mod 73),

which is equivalent to

(3 · 162 + 1)z + 84 ≡ 0 (mod 7),

or 13z ≡ 0 (mod 7). So we put z = 0, and find that x ≡ 16 (mod 73) solves
x3 + x+ 4 ≡ 0 (mod 73).

Theorem 8.2 (Hensel’s Lemma). Let f(x) ∈ Z[x]. Suppose that f(a) ≡ 0
(mod pj), and that pτ‖f ′(a). Then if j > 2τ + 1, it follows that:

(i) whenever b ≡ a (mod pj−τ ), one has f(b) ≡ f(a) (mod pj) and pτ‖f ′(b);

(ii) there is a unique residue t (mod p) such that f(a+tpj−τ ) ≡ 0 (mod pj+1).

Proof. First consider part (i) of the theorem. Let the integers a and b satisfy
the hypotheses of the statement of the theorem, and define the integer h by
means of the relation b− a = hpj−τ . Then by the binomial theorem, which for
polynomials we can interpret as a version of Taylor’s theorem, it follows that

f(b) = f(a+ hpj−τ ) = f(a) + hpj−τf ′(a) +
1

2!
f ′′(a)(hpj−τ )2 + . . . .

Despite the presence of reciprocals of factorials, the coefficients in the above
Taylor expansion are necessarily integral. It is for this purpose that we regard
the Taylor expansion as an application of the binomial theorem, in which each
monomial xm occuring in f(x) is expanded individually. Thus the third and
higher terms in the above expansion are all divisible by p2(j−τ). But j > 2τ+1,
whence 2(j − τ) > j + (j − 2τ) > j, and so

f(b) ≡ f(a) + hpj−τf ′(a) (mod pj).

Since pτ |f ′(a), the latter shows that f(b) ≡ f(a) (mod pj). Moreover, applying
the binomial theorem in like manner, one finds that

f ′(b) = f ′(a+ hpj−τ ) ≡ f ′(a) (mod pj−τ )

≡ f ′(a) (mod pτ+1),

since j − τ > τ + 1. Then since pτ‖f ′(a), one obtains pτ‖f ′(b), and this
completes the proof of the first part of the theorem.

Now we turn to the second part of the theorem. Since pτ‖f ′(a), we may
write f ′(a) = gpτ for a suitable integer g with (g, p) = 1. Let g be any integer
with gg ≡ 1 (mod p), and write a′ = a − gf(a)p−τ . Then an application of
the binomial theorem on this occasion supplies the congruence

f(a′) = f(a− gf(a)p−τ ) ≡ f(a)− p−τf(a)gf ′(a) (mod p2(j−τ)),

since p−τgf(a) ≡ 0 (mod pj−τ ) and j > τ + 1. But 2(j − τ) > j + 1, and thus

f(a′) ≡ f(a)− (p−τf(a)g)(gpτ ) ≡ f(a)− f(a)gg ≡ 0 (mod pj+1).

So there exists an integer t with f(a+ tpj−τ ) ≡ 0 (mod pj+1), and indeed one
may take t ≡ −p−jf(a)(p−τf ′(a))−1 (mod p).
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In order to establish the uniqueness of the integer t, suppose, if possible,
that two such integers t1 and t2 exist. Then one has

f(a+ t1p
j−τ ) ≡ 0 ≡ f(a+ t2p

j−τ ) (mod pj+1),

whence by the binomial theorem, as above, one obtains

f(a) + t1p
j−τf ′(a) ≡ f(a) + t2p

j−τf ′(a) (mod pj+1).

Thus t1f
′(a) ≡ t2f

′(a) (mod pτ+1). Since pτ‖f ′(a), we obtain t1 ≡ t2 (mod p).
This establishes the uniqueness of t modulo p, completing our proof. �

Example 8.3. Let f(x) = x2 + 1. Find the solutions of the congruence
f(x) ≡ 0 (mod 54).

Observe that the congruence x2 + 1 ≡ 0 (mod 5) has the solutions x ≡ ±2
(mod 5) (note that there are at most 2 solutions modulo 5, by Lagrange’s
theorem). Consider first the solution x0 = 2 of the latter congruence. One
finds that f ′(x0) = 2x0 ≡ −1 (mod 5). It follows that 50‖f ′(x0), and since
f(x0) = 5 ≡ 0 (mod 5), we may apply Hensel’s iteration to find integers xn
(n > 1) with f(xn) ≡ 0 (mod 5n). We obtain

x1 ≡ x0 −
f(x0)

f ′(x0)
≡ 2− 5

−1
≡ 7 (mod 52),

x2 ≡ 7− 50

14
≡ 7− 50

−1
≡ 57 (mod 53)

x3 ≡ 57− 3 250

114
≡ 57− 3 250

−1
≡ 3307 ≡ 182 (mod 54).

Thus x = 182 provides a solution of the congruence x2 +1 ≡ 0 (mod 54). Pro-
ceeding similarly, one may lift the alternate solution x = −2 to the congruence
x2 + 1 ≡ 0 (mod 5) to obtain the solution x = −182 (mod 54). Note that in
each instance, the lifting process provided by Hensel’s lemma led to a unique
residue modulo 54 corresponding to each starting solution modulo 5.

Example 8.4. Let f(x) = x2 − 4x + 13. Find all of the solutions of the
congruence f(x) ≡ 0 (mod 34).

Notice that

x2 − 4x+ 13 ≡ x2 + 2x+ 1 ≡ (x+ 1)2 (mod 3),

and hence x ≡ −1 (mod 3) is the only solution of the congruence f(x) ≡ 0
(mod 3). Next, since f ′(x) = 2x− 4, we find that 3‖f ′(−1), and so in order to
apply Hensel’s lemma, we must determine all of the solutions of the congruence
f(x) ≡ 0 (mod 33). We proceed systematically.

(i) Observe first that any solutions satisfy x ≡ 2 (mod 3), and so any solution
x must satisfy x ≡ 2, 5 or 8 modulo 9. One may verify that all three residue
classes satisfy f(x) ≡ 0 (mod 9).

(ii) Next we consider all residues modulo 27 satisfying x ≡ 2, 5 or 8 modulo
9, and find that none of these (there are 9 such residues) provide solutions of
f(x) ≡ 0 (mod 27).
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So there are no solutions to the congruence x2 − 4x+ 13 ≡ 0 (mod 34).

See Figure 2 for a pictorial representation of the lifting process in these two
examples.

Some concluding observations may be of assistance:

(i) Hensel’s lemma allows one to lift repeatedly. Thus, whenever

f(a) ≡ 0 (mod pj) and pτ‖f ′(a) with j > 2τ + 1

then there exists a unique residue t modulo p such that, with a′ = a+ tpj−τ ,

f(a′) ≡ 0 (mod pj) and pτ‖f ′(a′) with j + 1 > 2τ + 1,

and then we are set up to repeat this process.

(ii) Notice that in Hensel’s lemma, the residue t modulo p is unique, and given
by

t ≡ −(p−jf(a))(p−τf ′(a))−1 (mod p),

so one only needs to compute (p−τf ′(a))−1 modulo p. Moreover, p−τf ′(a′) ≡
p−τf ′(a) (mod p), so our initial inverse computation remains valid for subse-
quent lifting processes.

(iii) If f(a) ≡ 0 (mod pj) and pτ‖f ′(a) and j > 2τ + 1, then

f(a+ hpj−τ ) ≡ f(a) ≡ 0 (mod pj).

So there are pτ solutions of f(x) ≡ 0 (mod pj) corresponding to the single
solution x ≡ a (mod pj), namely a+ hpj−τ with 0 6 h 6 pτ .

A sketch of the p-adic numbers (non-examinable). Let us begin by
recalling how the real numbers R are defined starting from Q. One begins
with two ingredients: (i) the set of rational numbers Q, and (ii) the ordinary
absolute value | · |. Now consider the set of Cauchy sequences in Q, that is,
the set of sequences (an)∞n=1 satisfying the property that whenever ε > 0, there
exists N = N(ε) such that whenever n > m > N(ε), one has |an − am| < ε.
Define

R = {(an)∞n=1 : an ∈ Q for each n, and (an) is a Cauchy sequence}.
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One can show that R forms a ring under addition and multiplication defined
coordinatewise in the obvious fashion. Now identify two Cauchy sequences (an)
and (bn) when limn→∞ |an − bn| = 0. Modulo this equivalence, we may label
Cauchy sequences, say α = (an), and then call the set of all of these elements
the real numbers. [A more precise treatment would show that the set N of
Cauchy sequences with limit 0 forms an ideal in R, and then that the quotient
R/N inherits the axioms for a field, and that | · | can be extended to R/N
with the usual properties for the real numbers satisfied with this definition of
| · |. But we are being sketchy here, and so we will not get bogged down in
such details.] One can prove that R is complete with respect to the absolute
value | · | inherited from Q, and we refer to R as being the completion of Q
with respect to | · |.

We now define a substitute for the absolute value that measures the power
of a given prime dividing the argument.

Definition 8.5. Let p be a prime number. Any non-zero rational number α
can be written uniquely in the form α = pru/v, where u ∈ Z, v ∈ N and r ∈ Z,
such that p - uv and (u, v) = 1. We define the p-adic valuation | · |p by setting
|0|p = 0, and when α ∈ Q\{0}, by putting |α|p = p−r, with r defined as above.

Exercises (i) Show that |α|p > 0 for all α ∈ Q, with equality only for α = 0;
(ii) that |αβ|p = |α|p|β|p for all α, β ∈ Q; (iii) that |α + β|p 6 max{|α|p, |β|p}
for all α, β ∈ Q.

The last inequality is known as the ultrametric inequality, and constitutes a
stronger version of the triangle inequality.

Now define Cauchy sequences in Q with respect to |·|p just as in the classical
situation above. We say that (an)∞n=1 is Cauchy with resepct to the p-adic
valuation if, whenever ε > 0, there exists a positive number N(ε) such that
whenever n > m > N(ε), one has |an − am|p < ε. Define next

Qp = {(an)∞n=1 : an ∈ Q for each n, and (an) is Cauchy with respect to | · |p}.
One can show that Qp forms a ring under addition and multiplication defined
coordinatewise in the obvious fashion. Now identify two Cauchy sequences (an)
and (bn) when limn→∞ |an − bn|p = 0. Modulo this equivalence, we may label
Cauchy sequences, say α = (an), and then call the set of all of these elements
the p-adic numbers Qp. [Again, a more precise treatment would show that
the set Np of Cauchy sequences with limit 0 forms an ideal in Qp, and then
that the quotient Qp/Np inherits the axioms for a field, and that | · |p can be
extended to Qp/Np with properties analogous to those satisfied by | · |p on Q
enjoyed by | · |p on Qp. Again, we are being sketchy here, and so we avoid
getting bogged down in such details.] One can prove that Qp is complete with
respect to the p-adic valuation | · |p inherited from Q, and we refer to Qp as
being the completion of Q with respect to | · |p.

Example 8.6 (Conway and Sloane). We give an example of a sequence in Q
with respect to | · |5 that has a limit in Q5 that can be interpreted as 2/3.
Consider the sequence (an)∞n=1 defined by a1 = 4, a2 = 34, a3 = 334, ..., and in
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general an = d10n/3e. Then for every natural number n, one has 3an−2 = 10n,
and hence |3an − 2|5 = 5−n. Thus we see that limn→∞ |3an − 2|5 = 0, whence
(an) converges in the 5-adic sense to 2/3.

Remark 8.7. One has
∑∞

n=0 an converges in Qp ⇐⇒ limn→∞ an = 0.

Write sN for the partial sum
∑N

n=0 an. Then in order to justify this remark,
note on the one hand that if

∑∞
n=0 an converges, then

lim
N→∞

aN = lim
N→∞

(sN − sN−1) = lim
N→∞

sN − lim
M→∞

sM = 0.

On the other hand, if limn→∞ an = 0, then given any positive number ε, there
exists a positive number N(ε) such that whenever n > N(ε), then one has
|an|p < ε. But then whenever N > M > N(ε), one has

|sN − sM |p = |aM+1 + · · ·+ aN |p 6 max
M<n6N

|an|p < ε,

by making use of the ultrametric inequality. Thus we see that (sN) is a Cauchy
sequence with respect to | · |p, and hence has a limit.

The set of p-adic numbers with valuation at most 1 is known as the p-adic
integers Zp, so that Zp = {α ∈ Qp : |α|p 6 1}. Notice that the set of integers Z
can be naturally embedded into Zp, and likewise Q can be naturally embedded
into Qp.

Fact 8.8. If α ∈ Qp, then for some non-negative integer N , one can write α
in the shape

α =
∞∑

n=−N

anp
n,

in which the coefficients ai lie in the set {0, 1, . . . , p− 1}.

One can check, for example, that in Q7, one has

1/5 = 3 + 1 · 7 + 4 · 72 + 5 · 73 + 2 · 74 + 1 · 75 + . . . .

Theorem 8.9 (Hensel’s lemma revisited). Let f ∈ Zp[x], and suppose that a
is an integer satisfying the condition |f(a)|p < |f ′(a)|2p. Then there exists a
unique p-adic integer α such that

f(α) = 0 and |α− a|p 6 |f ′(a)|−1p |f(a)|p.

Example 8.10. We saw earlier that the congruence 22 + 1 ≡ 0 (mod 5) gives
rise to a chain of solutions to the congruence x2 + 1 ≡ 0 (mod 5n). On writing
f(x) = x2 + 1, we have |f(2)|5 = |5|5 = 5−1, and |f ′(2)|5 = |2 · 2|5 = 1, whence
|f(2)|5 < |f ′(2)|25. Then it follows from the 5-adic version of Hensel’s lemma
that there exists α ∈ Z5 for which f(α) = 0 and |α − 2|5 6 5−1. If we simply
choose the truncation of the 5-adic expansion of α modulo 5n, say αn, then of
course we obtain a solution x = αn of the congruence x2 + 1 (mod 5n). In this
sense, the 5-adic solution x = α of the equation x2+1 = 0 encodes information
concerning all of the associated congruences modulo 5n.
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We finish this sketch of the p-adic numbers by pointing out that the inter-
action between completion and algebraic closure is not as simple for the p-adic
numbers as for the real numbers. Thus, the completion of Q with respect to
the ordinary absolute value | · | is R, and the algebraic closure of R is C, the
latter being both complete and algebraically closed. Given a prime number p
on the other hand, the completion of Q with respect to the p-adic valuation
| · |p is Qp, and the algebraic closure of Qp is a larger field Qp. It transpires that

Qp is not itself complete (in contrast to the situation for C). It is possible to

extend the valuation | · |p to a p-adic valuation ‖ · ‖p on Qp, then complete the

latter with respect to ‖·‖p. The result is a field Q̂p which is both complete and
algebraically closed. this represents the proper p-adic analogue of the complex
numbers.

9. Primitive roots and power residues

A basic issue for understanding the structure of a multiplicative group of
reduced residues is to find generators of that group, hence the idea of the order
of an element and primitive roots.

Definition 9.1. Let m denote a positive integer, and let a be any integer with
(a,m) = 1. Let h be the least positive integer with ah ≡ 1 (mod m). Then we
say that the order of a modulo m is h (or that a belongs to h modulo
m).

Lemma 9.2. Let m ∈ N and a ∈ Z satisfy (a,m) = 1. Then the order d of a
modulo m exists, and d|φ(m). Moreover, whenever ak ≡ 1 (mod m), one has
d|k.

Proof. By Euler’s theorem, one has aφ(m) ≡ 1 (mod m), and so the order of
a modulo m clearly exists. Suppose then that d is the order of a modulo m,
and further that ak ≡ 1 (mod m). Then it follows from the division algorithm
that there exist integers q and r with k = dq + r and 0 6 r < d. But then we
obtain

ak = (ad)qar ≡ ar ≡ 1 (mod m),

whence r = 0. Thus we have d|k, and in particular we deduce that d|φ(m). �
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Lemma 9.3. Suppose that a has order h modulo m. Then ak has order h/(h, k)
modulo m.

Proof. By Lemma 9.2, one has (ak)j ≡ 1 (mod m) if and only if h|kj. But
h|kj ⇐⇒ h/(h, k)|(k/(h, k))j ⇐⇒ h/(h, k)|j. Thus the least positive
integer j such that (ak)j ≡ 1 (mod m) is j = h/(h, k). �

Lemma 9.4. Suppose that a has order h modulo m, and b has order k modulo
m. Then whenever (h, k) = 1, it follows that ab has order hk modulo m.

Proof. Let r denote the order of ab modulo m. Then since

(ab)hk = (ah)k(bk)h ≡ 1 (mod m),

it follows from Lemma 9.2 that r|hk. But we also have

brh ≡ (ah)rbrh ≡ (ab)rh ≡ 1 (mod m),

whence k|rh. Since (h, k) = 1, moreover, the latter implies that k|r. Similarly,
on reversing the roles of a and b, we see that h|r. Then since (h, k) = 1, we
deduce that hk|r. We therefore conclude that hk|r|hk, and thus r = hk. �

Definition 9.5. If g belongs to the exponent φ(m) modulo m, then g is called
a primitive root modulo m.

Note: If there exists a primitive root modulo m, then the multiplicative group
of reduced residues modulo m is cyclic, since we have

(Z/mZ)× = 〈g〉 ∼= Cφ(m).

Theorem 9.6. If p is a prime number, then there exist φ(p − 1) distinct
primitive roots modulo p.

Proof. When p = 2, the conclusion of the theorem is immediate, so we suppose
henceforth that p is an odd prime. Observe first that each of the residues
1, 2, . . . , p − 1 belongs to some divisor d of p − 1 modulo p. Let ψ(d) denote
the number of the latter residues belonging to d modulo p. Then plainly,∑

d|(p−1)

ψ(d) = p− 1.

We aim to show that for each divisor d of p− 1, one has ψ(d) 6 φ(d). Given
the validity of this inequality, one obtains

p− 1 =
∑

d|(p−1)

ψ(d) 6
∑

d|(p−1)

φ(d) = p− 1,

and so the central inequality must hold with equality for every d. The desired
conclusion then follows from the case d = p − 1 of the consequent relation
ψ(d) = φ(d).

In order to verify our claim, suppose that d|(p− 1) and ψ(d) 6= 0. Let a be
any residue belonging to d modulo p. It follows that a, a2, . . . , ad are mutually
incongruent solutions of the congruence xd ≡ 1 (mod p). For certainly, for
each positive integer j one has (aj)d = (ad)j ≡ 1 (mod p). In addition, if it
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were the case that for two exponents i and j with 1 6 i < j 6 d, one has
aj ≡ ai (mod p), then there would exist a positive integer h = j − i < d
with ah ≡ 1 (mod p), contradicting the assumption that a has order d. By
Lagrange’s theorem, meanwhile, there are at most d solutions modulo p to the
congruence xd ≡ 1 (mod p), and thus the above list of residues constitutes the
entire solution set modulo p. Next, on making use of Lemma 9.3, we find that
whenever (m, d) > 1, the residue am has order d/(m, d) < d, and so the only
reduced residues modulo p of order d are congruent to am (mod p) for some
integer m with 1 6 m 6 d and (m, d) = 1. There are consequently precisely
φ(d) such residues.

What we have shown thus far is that for each divisor d of p − 1, one has
either ψ(d) = φ(d), or else ψ(d) = 0. This is a strong form of the inequality
ψ(d) 6 φ(d) that we sought, and so our earlier discussion confirms that the
number of distinct primitive roots modulo p is φ(p− 1). �

Theorem 9.7. Suppose that g is a primitive root modulo p. Then there exists
x ∈ {0, 1} such that the residue g1 = g + px is a primitive root modulo p2.
When p is odd, moreover, this residue g1 is a primitive root modulo pk for
every natural number k.

Proof. Let g be a primitive root modulo p. Define the integer y via the relation
gp−1 = 1 + py, and write g1 = g + px, in which x is interpreted as a variable
to be assigned in due course. In view of the expansion

gp−11 = (g + px)p−1 ≡ gp−1 + p(p− 1)xgp−2 (mod p2),

one may write gp−11 = 1 + pz, in which

z ≡ gp−1 − 1

p
+ (p− 1)gp−2x = y + (p− 1)gp−2x (mod p).

The coefficient of x here is not divisible by p, and so for x = 0 or 1 one has
(z, p) = 1. We fix such an integer x, and now show that for every prime p
this construction ensures that g1 is a primitive root modulo p2, and moreover
that when p is odd, then the residue g1 is a primitive root modulo pk for every
natural number k.

Suppose that g1 has order d. Then Lemma 9.2 shows that d|pk−1(p−1). But
g1 is a primitive root modulo p and gd1 ≡ 1 (mod p), and so in particular one
has (p − 1)|d. Consequently, one must have d = pj(p − 1) for some integer j
with 0 6 j 6 k − 1. But in view of our earlier observation, one has (z, p) = 1,
and thus gp−11 6≡ 1 (mod p2). Then g1 is always a primitive root modulo p2.
When p is odd, moreover, it follows by an inductive argument that we may
write (1 + pz)p

j
= 1 + pj+1zj, for a suitable integer zj with (zj, p) = 1. Indeed,

for each j > 0 we have

(1 + pj+1zj)
p ≡ 1 + pj+2zj (mod pj+3),

so that (1+pj+1zj)
p = 1+pj+2zj+1, for some integer zj+1 satisfying (zj+1, p) =

(zj, p) = 1. Note that this conclusion relies on the fact that
(
p
2

)
≡ 0 (mod p),
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which fails when p = 2. Thus we obtain the relation

gd1 = (gp−11 )p
j

= (1 + pz)p
j

= 1 + pj+1zj.

Then since g1 has order d modulo pk, this last expression must be congruent to
1 modulo pk, and hence j+ 1 > k. Then since j 6 k−1, the only possibility is
that j = k− 1, and we are forced to conclude that d = φ(pk). We have shown,
therefore, that g1 is a primitive root modulo pk, and this completes the proof
of the theorem. �

Corollary 9.8. The number of primitive roots modulo p is φ(p−1), the number
modulo p2 is (p−1)φ(p−1), and when p is odd, the number modulo pj (j > 3)
is pj−2(p− 1)φ(p− 1).

Proof. For each modulus in question, say m, there exists a primitive root g,
and moreover gk is primitive modulo m if and only if (k, φ(m)) = 1. But
the φ(m) residues gk (mod m) are all distinct for 1 6 k 6 φ(m), so every
reduced residue has this form. Then the φ(φ(m)) residues gk (mod m) with
(k, φ(m)) = 1 comprise all of the primitive roots modulo m. The desired
conclusion now follows on making use of the multiplicative property of the
Euler totient. �

Theorem 9.9. Let m be a natural number.

(i) There exists a primitive root modulo m if and only if m = 1, 2, 4, pα or
2pα, in which p is an odd prime number and α is a natural number.

(ii) When j > 3, the order of 5 modulo 2j is 2j−2. Furthermore, every
reduced residue class modulo 2j may be written in the form (−1)l5m,
where l = 0 or 1 and 1 6 m 6 2j−2, and in which the integers l and m
are unique.

Proof. When m = 2, 4, the residues 1, 3, respectively, are primitive roots.
When m = pα the desired conclusion is immediate from Theorem 9.7. Suppose
then that m = 2pα. If g is a primitive root modulo pα (and such exist by
Theorem 9.7), then one of g and g + pα is an odd integer, say g′. The order
of g′ modulo 2pα must be at least φ(pα), since g′ is primitive modulo pα. But
φ(2pα) = φ(2)φ(pα) = φ(pα), so that the latter observation already ensures
that g′ is primitive modulo 2pα.

Suppose next that m is none of 1, 2, 4, pα or 2pα, for any odd prime p.
Then provided that m is not a power of 2, there exist integers n1 and n2 with
(n1, n2) = 1, n1 > n2 > 2 and m = n1n2. But then φ(n1) and φ(n2) are both
even, whence

aφ(m)/2 = (aφ(n1))φ(n2)/2 ≡ 1 (mod n1) whenever (a,m) = 1,

and

aφ(m)/2 = (aφ(n2))φ(n1)/2 ≡ 1 (mod n2) whenever (a,m) = 1.

Then since (n1, n2) = 1 and m = n1n2, we find that aφ(m)/2 ≡ 1 (mod m)
whenever (a,m) = 1. No reduced residue modulo m, therefore, has order
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exceeding φ(m)/2, and so, in particular, no residue can be a primitive root
modulo m.

It remains to consider the situation in which m = 2j with j > 3. We begin
by establishing that for each α with α > 2, one has 2α‖(52α−2 − 1). This is
clear when α = 2. Suppose then that the assertion holds when α = t > 2.
Then 2t‖(52t−2 − 1), whence 2‖(52t−2

+ 1), and thus 2t+1‖(52t−2 − 1)(52t−2
+ 1),

or equivalently, one has 2t+1‖(52t−1 − 1). Then the assertion that we presently
seek to establish holds with α = t + 1 whenever it holds with α = t, whence
by induction it holds for all α > 2.

Since 2α‖(52α−2 − 1) for α > 2, it follows that 5 has order precisely 2α−2

modulo 2α, and this establishes the first claim of the second part of the the-
orem. Observe next that there are 2α−2 distinct reduced residues modulo 2α

of the shape 5k, all of which are congruent to 1 modulo 4 (why?), and so the
remaining reduced residues modulo 2α must all be congruent to −1 modulo 4,
and are hence of the shape −5k. Thus all reduced residues modulo 2α may be
written in the form (−1)l5m, where l = 0 or 1 and 1 6 m 6 2α−2. Further-
more, these choices for l and m are distinct, for the total number of residues
represented in this manner is at most 2α−1, and yet there are precisely 2α−1

residues to be represented. That there are no primitive roots modulo 2α when
α > 2 follows on noting that (−1)l5m has order at most 2α−2 < φ(2α) when
α > 3. �

(For the cognoscenti) We have seen thus far that

(Z/prZ)× ∼= Cφ(pr), when p is odd,

(Z/2Z)× ∼= C1,

(Z/4Z)× ∼= C2,

(Z/2rZ)× ∼= C2 × C2r−2 , when r > 3.

Then on making use of the Chinese Remainder Theorem, we infer that if

m = 2e
∏
pr‖m
p>2

pr,

then

(Z/mZ)× ∼= Ge ×
∏
pr‖m
p>2

Cφ(pr),

where

Ge
∼=


C1, when e = 0, 1,

C2, when e = 2,

C2 × C2e−2 , when e > 3.

Put

e(ph) =

{
φ(ph), when p is odd, and when ph = 2 or 4,
1
2
φ(ph), when p = 2 and h > 3,
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and then define the (Carmichael) function

λ(n) = lcm
ph‖n

e(ph).

It is clear from the above discussion that whenever (a, n) = 1, then one has

aλ(n) ≡ 1 (mod n),

providing a refinement of Euler’s theorem. Moroever, for every natural number
n, it is apparent also that there exists an integer a with (a, n) = 1 having order
precisely λ(n) modulo n.

10. Quadratic and power residues

We now investigate residues with special properties of algebraic type.

Definition 10.1. (i) When (a,m) = 1 and xn ≡ a (mod m) has a solution,
then we say that a is an nth power residue modulo m.

(ii) When (a,m) = 1, we say that a is a quadratic residue modulom provided
that the congruence x2 ≡ a (mod m) is soluble. If the latter congruence is
insoluble, then we say that a is a quadratic non-residue modulo m.

Theorem 10.2. Suppose that p is a prime number and (a, p) = 1. Then the
congruence xn ≡ a (mod p) is soluble if and only if

a
p−1

(n,p−1) ≡ 1 (mod p).

Proof. Let g be a primitive root modulo p. Then for some natural number r
one has a ≡ gr (mod p). If

a
p−1

(n,p−1) ≡ 1 (mod p),

then

g
r(p−1)
(n,p−1) ≡ 1 (mod p).

But since g is primitive, the latter congruence can hold only when

(p− 1)

∣∣∣∣ r(p− 1)

(n, p− 1)
,

whence (n, p − 1)|r. But by the Euclidean Algorithm, there exist integers u
and v with nu+ (p− 1)v = (n, p− 1), so on writing r = k(n, p− 1), we obtain

a ≡ gk(n,p−1) ≡ (gku)n(gp−1)kv ≡ (gku)n (mod p).

Thus a is indeed an nth power residue under these circumstances.

On the other hand, if the congruence xn ≡ a (mod p) is soluble, then

a
p−1

(n,p−1) ≡ (xp−1)n/(n,p−1) ≡ 1 (mod p),

on making use of Fermat’s Little Theorem. This completes the proof of the
theorem. �

Example 10.3. Determine whether or not 3 is a 4th power residue modulo
17.
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Observe that on making use of Theorem 10.2, the congruence x4 ≡ 3 (mod 17)
is soluble if and only if 316/4 ≡ 1 (mod 17), that is, if 81 ≡ 1 (mod 17). Since
this congruence is not satisfied, one finds that 3 is not a 4th power residue
modulo 17.

Definition 10.4. When p is an odd prime number, define the Legendre

symbol

(
a

p

)
by

(
a

p

)
=


+1, when a is a quadratic residue modulo p,

−1, when a is a quadratic non-residue modulo p,

0, when p|a.

Theorem 10.5 (Euler’s criterion). When p is an odd prime, one has(
a

p

)
≡ a(p−1)/2 (mod p).

Proof. If a(p−1)/2 ≡ 1 (mod p), then the desired conclusion is an immediate
consequence of Theorem 10.2. The conclusion is also immediate when p|a. It
remains to consider the situation in which a(p−1)/2 6≡ 1 (mod p). Let a be an
integer with (a, p) = 1, write r = a(p−1)/2, and note that in view of Fermat’s
Little Theorem, one has r2 = ap−1 ≡ 1 (mod p), whence r ≡ ±1 (mod p).
Then if r 6≡ 1 (mod p), one necessarily has r ≡ −1 (mod p). Thus, in the
situation in which a(p−1)/2 6≡ 1 (mod p), wherein Theorem 10.2 establishes
that a is a quadratic non-residue modulo p, one has a(p−1)/2 ≡ −1 (mod p),
and so the desired conclusion follows once again. This completes the proof of
the theorem. �

Theorem 10.6. Let p be an odd prime number. Then

(i) for all integers a and b, one has(
ab

p

)
=

(
a

p

)(
b

p

)
;

(ii) whenever a ≡ b (mod p), one has(
a

p

)
=

(
b

p

)
;

(iii) whenever (a, p) = 1, one has(
a2

p

)
= 1 and

(
a2b

p

)
=

(
b

p

)
;

(iv) one has (
1

p

)
= 1 and

(
−1

p

)
= (−1)(p−1)/2.
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Proof. These conclusions are essentially immediate from Theorem 10.5. For
example, the latter theorem shows that(

ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
(mod p),

and so the conclusion of part (i) of the theorem follows on noting that since p
is odd, one cannot have 1 ≡ −1 (mod p). Parts (ii) and (iv) are trivial from
the last observation, and part (iii) follows from Fermat’s Little Theorem. �

Note: The number of solutions of the congruence x2 ≡ a (mod p) is given

by 1 +

(
a

p

)
. For when (a, p) = 1 and the congruence is soluble, one has two

distinct solutions and 1 +

(
a

p

)
= 1 + 1 = 2. In the corresponding case in

which the congruence is insoluble, one has 1 +

(
a

p

)
= 1 + (−1) = 0. When

(a, p) > 1, one the other hand, one has the single solution x ≡ 0 (mod p), and

then 1 +

(
a

p

)
= 1 + 0 = 1.

The above observation provides a means of analysing the solubility of qua-
dratic equations. For if (a, p) = 1 and p > 3, then the congruence ax2+bx+c ≡
0 (mod p) is soluble if and only if (2ax + b)2 ≡ b2 − 4ac (mod p) is soluble,
that is, if and only if either b2 − 4ac ≡ 0 (mod p), or else(

b2 − 4ac

p

)
= 1.

The number of solutions of the congruence is therefore precisely

1 +

(
b2 − 4ac

p

)
.

For each integer a and any natural number n, define the numerically least
residue of a modulo n as the integer a′ satisfying a ≡ a′ (mod n) and

−1
2
n < a′ 6 1

2
n.

Theorem 10.7 (Gauss’ Lemma). Let p be an odd prime number, and for each
reduced residue a modulo p, let aj denote the numerically least residue of aj
(mod p). Then (

a

p

)
= (−1)l,

where l = card {1 6 j 6 1
2
(p− 1) : aj < 0}.

Proof. Write r = 1
2
(p−1). Then we claim that the integers |aj| (1 6 j 6 r) are

simply the integers 1, 2, . . . , r in some order. In order to establish this claim,
observe that for each integer j with 1 6 j 6 r, one has 1 6 |aj| 6 r. Moreover,
if aj = −ak for any j and k with 1 6 j, k 6 r, then aj ≡ −ak (mod p), whence
a(j + k) ≡ 0 (mod p). On recalling that by hypothesis we have (a, p) = 1, we
infer that p|(j + k), a conclusion that contradicts our earlier assumption that



42 TREVOR D. WOOLEY

1 6 j, k 6 r, since then 0 < j + k 6 2r < p. Thus we see that aj = −ak for no
indices j and k with 1 6 j, k 6 r. Moreover, if aj = ak for any j and k with
1 6 j, k 6 r, then aj ≡ ak (mod p), whence j ≡ k (mod p). Our hypothesis
that 1 6 j, k 6 r in this instance ensures that in fact j = k. We may therefore
conclude that when 1 6 j, k 6 r, one has |aj| = |ak| if and only if j = k, and
this suffices to establish our original claim.

We now complete the proof of the lemma, noting in the first instance that
as an immediate consequence of the above claim, one has

(−1)lr! = a1a2 . . . ar ≡ a(2a) . . . (ar) = arr! (mod p).

Here we recall that l is the number of the reduced residues a1, a2, . . . , ar that
have negative sign. But p - r!, and thus we deduce that ar ≡ (−1)l (mod p).
The conclusion of the lemma is now immediate from Euler’s criterion. �

Corollary 10.8. When p is an odd prime number, one has(
2

p

)
= (−1)(p

2−1)/8.

Proof. When a = 2, one has

aj =

{
2j, when 1 6 j 6 bp/4c,
2j − p, when bp/4c < j 6 (p− 1)/2.

Then by Gauss’ lemma, one has

(
2

p

)
= (−1)l, where

l = card{1 6 j 6 (p− 1)/2 : aj < 0} = 1
2
(p− 1)− bp/4c.

We now classify the odd prime numers, and find that

p = 8k + 1⇒ l = 1
2
(8k)− b2k + 1/4c = 2k,

p = 8k − 1⇒ l = 1
2
(8k − 2)− b2k − 1/4c = 2k,

p = 8k + 3⇒ l = 1
2
(8k + 2)− b2k + 3/4c = 2k + 1,

p = 8k − 3⇒ l = 1
2
(8k − 4)− b2k − 3/4c = 2k − 1.

Thus, on noting that

((8k ± 1)2 − 1)/8 ≡ 0 (mod 2) and ((8k ± 3)2 − 1)/8 ≡ 1 (mod 2),

we find that l ≡ (p2 − 1)/8 (mod 2), and thus the conclusion of the corollary
follows from Gauss’ lemma. �

Note also that from Euler’s criterion, one has(
1

p

)
= 1 and

(
−1

p

)
= (−1)(p−1)/2.
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Thus we have simple formulae for

(
±1

p

)
and

(
±2

p

)
, and it is clear from the

multiplicative property of

(
·
p

)
that it suffices now to compute

(
q

p

)
for odd

prime numbers q in order to calculate

(
a

p

)
in general.

11. The law of quadratic reciprocity

Theorem 11.1 (Gauss). Let p and q be distinct odd prime numbers. Then(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Note 11.2. Rewriting the expression on the right hand side of the last equation
in the shape (

p

q

)
= (−1)

1
2
(p−1)·1

2
(q−1)

(
q

p

)
,

we see that

(
p

q

)
=

(
q

p

)
unless p and q are both congruent to 3 modulo 4.

Proof. (of the law of quadratic reciprocity) Observe that, as a consequence of

Gauss’ lemma, one has that

(
p

q

)
= (−1)l, where l is the number of lattice

points (x, y) satisfying the inequalities

0 < x < q/2 and − q/2 < px− qy < 0.

But y is an integer, and

y <
px

q
+

1

2
< (p+ 1)/2.

Thus l is the number of lattice points (x, y) in the rectangle R defined by
0 < x < q/2 and 0 < y < p/2 which satisfy −q/2 < px− qy < 0 (see Fig. 4).
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Similarly, we have

(
q

p

)
= (−1)m, where m is the number of lattice points in

the same rectangle R with −p/2 < qy − px < 0 (see Fig. 5).

We therefore obtain (
p

q

)(
q

p

)
= (−1)l+m,

and this will yield the desired conclusion(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4,

provided that 1
2
(p − 1) · 1

2
(q − 1) − (l + m) is even. But the latter quantity

is simply the number of lattice points (x, y) contained in the shaded region in
Fig. 5, namely those lattice points satisfying

px− qy 6 −q/2 or qy − px 6 −p/2.

These two regions are disjoint, and contain the same number of points, as
can be seen by considering the bijective correspondence

(x, y)←→ (1
2
(q + 1)− x, 1

2
(p+ 1)− y).

Note here that 1
2
q + px− qy is in bijective correspondence with

1
2
q + p

(
1
2
(q + 1)− x

)
− q

(
1
2
(p+ 1)− y

)
= 1

2
p+ qy − px,

and that the ordered pair
(
1
2
(q + 1)− x, y

)
is in bijective correspondence with

(x, 1
2
(p + 1) − y). Moreover, x = 1 is mapped to x = 1

2
(q − 1) and likewise

y = 1 to y = 1
2
(p − 1), and vice versa. Thus the number of lattice points in

the shaded region of Fig. 5 is twice the number contained in either shaded
triangle, and hence is even. This proves that 1

2
(p−1)1

2
(q−1)− (l+m) is even,

as we sought to establish, and hence the conclusion of the theorem follows as
described above. �

Example 11.3. Determine the value of

(
−3

p

)
.

By Quadratic Reciprocity we have(
3

p

)(p
3

)
= (−1)(3−1)(p−1)/4 = (−1)(p−1)/2,

and by Euler’s criterion, on the other hand,(
−1

p

)
= (−1)(p−1)/2.

Thus we see that(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)(p−1)/2 · (−1)(p−1)/2

(p
3

)
=
(p

3

)
.
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But (p
3

)
=


(

1

3

)
= 1, when p ≡ 1 (mod 3),(

2

3

)
= −1, when p ≡ 2 (mod 3).

Thus we deduce that(
−3

p

)
=

{
1, when p ≡ 1 (mod 3),

−1, when p ≡ 2 (mod 3).

One can use this evaluation to show that the only possible prime divisors of
x2 + 3, for integral values of x, are 3 and primes p with p ≡ 1 (mod 3). From
here, an argument similar to that due to Euclid shows that there are infinitely
many primes congruent to 1 modulo 3.

Example 11.4. Determine the value of

(
21

71

)
.

Applying the multiplicative property of the Legendre symbol, followed by qua-
dratic reciprocity, one finds that(

21

71

)
=

(
3

71

)(
7

71

)
= (−1)(71−1)(3−1)/4+(71−1)(7−1)/4

(
71

3

)(
71

7

)
=

(
71

3

)(
71

7

)
=

(
2

3

)(
1

7

)
=

(
2

3

)
= −1.

So

(
21

71

)
= −1, and hence 21 is not a quadratic residue modulo 71.

12. The Jacobi symbol

We wish to generalise the Legendre symbol

(
·
p

)
to accomodate composite

moduli.

Definition 12.1. Let Q be a positive odd integer, and suppose that Q =
p1 . . . ps, where the pi are prime numbers (not necessarily distinct). Then we

define the Jacobi symbol

(
a

Q

)
as follows:

(i)
(a

1

)
= 1;

(ii)

(
a

Q

)
= 0 whenever (a,Q) > 1;

(iii)

(
a

Q

)
=

(
a

p1

)(
a

p2

)
. . .

(
a

ps

)
whenever (a,Q) = 1.

Just as in the discussion concerning the Legendre symbol, we begin with
some simple properties of the Jacobi symbol.
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Theorem 12.2. Suppose that Q and Q′ are positive odd integers. Then:

(i)

(
P

Q

)(
P

Q′

)
=

(
P

QQ′

)
;

(ii)

(
P

Q

)(
P ′

Q

)
=

(
PP ′

Q

)
;

(iii) whenever (P,Q) = 1, one has

(
P

Q2

)
=

(
P 2

Q

)
= 1;

(iv) whenever (PP ′, QQ′) = 1, one has

(
P ′P 2

Q′Q2

)
=

(
P ′

Q′

)
;

(v) whenever P ≡ P ′ (mod Q), one has

(
P

Q

)
=

(
P ′

Q

)
.

Proof. Part (i) is immediate from the definition of the Jacobi symbol, and
part (ii) is immediate from the properties of the Legendre symbol. Parts (iii)
and (iv) follow directly from parts (i) and (ii), since the Jacobi symbol takes
values 0 or ±1. For part (v) of the theorem, observe that whenever P ≡ P ′

(mod Q), one has P ≡ P ′ (mod p) for each prime number p dividingQ, whence

also

(
P

p

)
=

(
P ′

p

)
for each prime p dividing Q. The desired conclusion is

therefore again immediate from the definition of the Jacobi symbol. �

Note 12.3. If the Jacobi symbol
(a
n

)
= −1, then it follows that a is not a

quadratic residue modulo n, since for some prime p with p|n one must have that

the Legendre symbol

(
a

p

)
= −1. But if

(a
n

)
= 1, then it is not necessarily

the case that a is a quadratic residue modulo n. For example, one has(
2

15

)
= 1, but

(
2

3

)
= −1 and

(
2

5

)
= −1.

The Jacobi symbol remains useful for calculating Legendre symbols, because
it satisfies the same reciprocity and simplifying relations as the Legendre sym-
bol (as we now demonstrate), and at the same time, whenever the Legendre

symbol
(a
n

)
is defined (that is, provided that n is an odd prime number), then

its value is the same as that of the corresponding Jacobi symbol.

Theorem 12.4. Suppose that Q is a positive odd integer. Then(
−1

Q

)
= (−1)(Q−1)/2 and

(
2

Q

)
= (−1)(Q

2−1)/8.

Proof. Suppose that Q is odd, and that Q = p1 . . . ps with each pi a prime
number. Then (

−1

Q

)
=

s∏
i=1

(
−1

pi

)
=

s∏
i=1

(−1)(pi−1)/2.



NUMBER THEORY 47

But whenever n1 and n2 are both odd, one has 1
2
(n1−1)(n2−1) ≡ 0 (mod 2),

whence

1
2
(n1−1)+ 1

2
(n2−1) ≡ 1

2
(n1n2−1)− 1

2
(n1−1)(n2−1) ≡ 1

2
(n1n2−1) (mod 2).

Iterating the latter relation, we deduce that

1
2
(Q− 1) ≡

s∑
i=1

(pi − 1)/2 (mod 2),

whence

(
−1

Q

)
= (−1)(Q−1)/2.

Similarly, we have(
2

Q

)
=

s∏
i=1

(
2

pi

)
=

s∏
i=1

(−1)(p
2
i−1)/8.

But whenever n1 and n2 are both odd, it follows that

1
8
(n2

1 − 1)(n2
2 − 1) ≡ 0 (mod 2),

whence

1
8
(n2

1 − 1) + 1
8
(n2

2 − 1) = 1
8
(n2

1n
2
2 − 1)− 1

8
(n2

1 − 1)(n2
2 − 1)

≡ 1
8
(n2

1n
2
2 − 1) (mod 2).

Thus, again iterating this relation, we find that

(Q2 − 1)/8 ≡
s∑
i=1

(p2i − 1)/8 (mod 2),

whence (
2

Q

)
= (−1)(Q

2−1)/8.

�

Theorem 12.5 (Quadratic Reciprocity). Suppose that P and Q are odd pos-
itive integers with (P,Q) = 1. Then(

P

Q

)(
Q

P

)
= (−1)(P−1)(Q−1)/4.

Proof. Suppose that Q = q1 . . . qs and P = p1 . . . pr are factorisations of P and
Q, respectively, into products of prime numbers. Then we have(

P

Q

)
=

s∏
j=1

(
P

qj

)
=

r∏
i=1

s∏
j=1

(
pi
qj

)
.

Then by quadratic reciprocity for the Legendre symbol, we obtain(
P

Q

)
=

r∏
i=1

s∏
j=1

(−1)(pi−1)(qj−1)/4
(
qj
pi

)
= (−1)ω

(
Q

P

)
,
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where we write

ω =
r∑
i=1

s∑
j=1

(pi − 1)(qj − 1)/4.

But as in the proof of Theorem 12.4, one has
r∑
i=1

s∑
j=1

(pi − 1)(qj − 1)/4 =

(
r∑
i=1

(pi − 1)/2

)(
s∑
j=1

(qj − 1)/2

)
≡ 1

2
(P − 1) · 1

2
(Q− 1) (mod 2).

We therefore deduce that(
P

Q

)
= (−1)(P−1)(Q−1)/4

(
Q

P

)
,

and the conclusion of the theorem now follows immediately. �

Jacobi symbols are useful for calculating Legendre symbols, since they take
the same values for prime moduli, and one can skip intermediate factorisations
before applying reciprocity.

Example 12.6. Calculate the Legendre symbol

(
1111

8093

)
.

One has(
1111

8093

)
= (−1)(8092)(1110)/4

(
8093

1111

)
=

(
316

1111

)
=

(
2

1111

)2(
79

1111

)
= (−1)(1110)(78)/4

(
1111

79

)
= −

(
5

79

)
= −(−1)(4)(78)/4

(
79

5

)
= −

(
4

5

)
= −

(
2

5

)2

= −1.

So 1111 is not a quadratic residue modulo 8093.

Example 12.7. Determine whether or not the congruence x2 + 6x − 50 ≡
0 (mod 79) has a solution.

Observe that x2+6x−50 = (x+3)2−59, and hence x2+6x−50 ≡ 0 (mod 79)

has a solution if and only if

(
59

79

)
= 1. But(

59

79

)
=

(
−20

79

)
=

(
−1

79

)(
2

79

)2(
5

79

)
= (−1)(79−1)/2

(
5

79

)
= −(−1)(5−1)(79−1)/4

(
79

5

)
= −

(
4

5

)
= −1.

Hence the congruence x2 + 6x− 50 ≡ 0 (mod 79) has no solution.

Example 12.8. Find the number of solutions of the congruence

y2 ≡ x2 + 1 (mod p)

when p is an odd prime.
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Observe first that this number N is equal to

p∑
x=1

(
1 +

(
x2 + 1

p

))
= p+

p∑
y=1

(
1 +

(
y

p

))(
y + 1

p

)

= p+

p∑
y=1

(
y + 1

p

)
+

p∑
y=1

(
y(y + 1)

p

)
.

Next we note that
p∑
y=1

(
y + 1

p

)
=

p∑
v=1

(
v

p

)
= 0.

For if g is a primitive root modulo p, then
(
g
p

)
= −1 (why?), and hence

p∑
v=1

(
v

p

)
=

p−1∑
v=1

(
v

p

)
=

p−1∑
l=1

(
gl

p

)
=

p−1∑
l=1

(
g

p

)l
=

p−1∑
l=1

(−1)l = 0.

We observe next that since for (x, p) = 1 one has(
x−1

p

)(
x

p

)
=

(
x−1x

p

)
=

(
1

p

)
= 1,

then (
x

p

)
=

(
x−1

p

)
.

Hence

p∑
x=1

(
x(x+ 1)

p

)
=

p−1∑
x=1

(
x(x+ 1)

p

)
=

p−1∑
x=1

(
x

p

)(
x+ 1

p

)

=

p−1∑
x=1

(
x−1

p

)(
x+ 1

p

)
=

p−1∑
x=1

(
x−1(x+ 1)

p

)

=

p−1∑
x=1

(
1 + x−1

p

)
=

p−1∑
y=1

(
1 + y

p

)

=

p∑
y=1

(
1 + y

p

)
−
(

1

p

)
=

p∑
z=1

(
z

p

)
− 1 = −1.

Thus
p∑

x=1

(
x(x+ 1)

p

)
= −1.

We therefore conclude that

N = p− 1.
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13. Application of residue symbols to counting solutions of
congruences

Let p be an odd prime. One can verify that the sum over y of the quadratic

residue symbol

(
y

p

)
is zero, either by making use of the conclusions of Ques-

tion 1 on Problem Sheet 4 (which is short and direct), or as follows (which is
more obscure). Write

M =

p∑
y=1

(
y

p

)
=

p−1∑
y=1

(
y

p

)
.

When (a, p) = 1, the mapping y 7→ ay (mod p) permutes the reduced residues
modulo p. Moreover, a primitive root g modulo p must be a quadratic non-
residue, in view of Euler’s criterion (we have g(p−1)/2 6≡ 1 (mod p)). Then we
have

M =

p−1∑
y=1

(
gy

p

)
=

(
g

p

) p−1∑
y=1

(
y

p

)
=

(
g

p

)
M.

But

(
g

p

)
= −1, and so we are forced to conlcude that M = 0.

Theorem 13.1. Let f(x) = ax2 + bx + c, where a, b and c are integers, and
let p be an odd prime number. Suppose that (a, p) = 1, and write d = b2− 4ac.
Then if p - d, one has

p∑
x=1

(
f(x)

p

)
= −

(
a

p

)
,

and if p|d, then
p∑

x=1

(
f(x)

p

)
= (p− 1)

(
a

p

)
.

Proof. One has

4a(ax2 + bx+ c) = (2ax+ b)2 − (b2 − 4ac) = y2 − d,
say, where d = b2 − 4ac and y = 2ax+ b. Then if p|d, we obtain

p∑
x=1

(
f(x)

p

)
=

p∑
y=1

(
(4a)−1

p

)(
y2

p

)
=

p−1∑
y=1

(
4a

p

)
= (p− 1)

(
a

p

)
.

This establishes the second claim in the statement of the theorem.

Suppose then that p - d. Then(
4a

p

) p∑
x=1

(
f(x)

p

)
=

p∑
x=1

(
(2ax+ b)2 − (b2 − 4ac)

p

)
=

p∑
y=1

(
y2 − d
p

)
.

Write

S(d) =

p∑
y=1

(
y2 − d
p

)
.
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Then we see that
p∑

x=1

(
f(x)

p

)
=

(
4a

p

)
S(d) =

(
a

p

)
S(d).

But since 1 +

(
z

p

)
is non-zero only when z is a square modulo p, say y2, and

is 2 when the latter is non-zero, and 1 when zero, we find that

S(d) =

p∑
y=1

(
y2 − d
p

)
=

p∑
z=1

((
z

p

)
+ 1

)(
z − d
p

)

=

p∑
z=1

(
z(z − d)

p

)
+

p∑
z=1

(
z − d
p

)
.

The last sum is zero, in view of the comments in the preamble to the statement
of Theorem 13.1. Thus, on making the change of variable z = wd, we find that

S(d) =

p∑
w=1

(
dw(dw − d)

p

)
=

p∑
w=1

(
d

p

)2(
w(w − 1)

p

)
=

p∑
w=1

(
w(w − 1)

p

)
.

Thus S(d) is independent of d, say S(d) = S(1). But then we deduce that

(p− 1)S(1) =

p−1∑
d=1

S(d) =

p−1∑
d=1

p∑
y=1

(
y2 − d
p

)
=

p∑
d=1

p∑
y=1

(
y2 − d
p

)
−

p∑
y=1

(
y2

p

)
.

We now make the change of variable u = y2 − d in the first summation of the
penultimate term, and again make use of the comments at the outset of this
section, and thereby deduce that

(p− 1)S(1) =

p∑
y=1

p∑
u=1

(
u

p

)
− (p− 1) = −(p− 1).

Then S(1) = −1, whence S(d) = −1 for all d with (d, p) = 1. We may therefore
conclude that when p - d, one has

p∑
x=1

(
f(x)

p

)
= −

(
a

p

)
.

This completes the proof of the theorem. �

When p is an odd prime with p - a, the conclusion of Theorem 13.1 shows
that the number of solutions of the congruence y2 ≡ ax2 +bx+c (mod p) with
1 6 x, y 6 p is

p∑
x=1

(
1 +

(
ax2 + bx+ c

p

))
= p−

(
a

p

)
,

when p - (b2 − 4ac), and
p∑

x=1

(
1 +

(
ax2 + bx+ c

p

))
= p+ (p− 1)

(
a

p

)
,
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when p|(b2−4ac). In both situations, the number of solutions of the congruence
is positive, and so the congruence y2 ≡ ax2 + bx+ c (mod p) is soluble.

14. Arithmetical functions

Recall from the preamble to the statement of Theorem 5.5 that a function
f : N→ C is called an arithmetical function. Recall also that a multiplicative
function f satisfies the property that whenever (m,n) = 1, one has f(mn) =
f(m)f(n). Also (Lemma 5.6), the function g(n) =

∑
d|n f(d) is multiplicative

whenever f(n) is multiplicative. In this section we discuss various properties
of arithmetical functions, many of them multiplicative, and seek to understand
what they “look” like.

Examples of arithmetical functions:

(i) the divisor function d(n), or τ(n), is defined for n ∈ N by τ(n) =
∑

d|n 1.
The divisor function is therefore multiplicative, as a consequence of Lemma
5.6. The k-fold divisor function dk(n), or τk(n), is defined via the relation

τk(n) =
∑

d1...dk=n
d1,...,dk∈N

1 or τk(n) =
∑
d|n

τk−1(d).

This function is also multiplicative, as a consequence again of Lemma 5.6.

(ii) the sum of divisors function σ(n) is defined by σ(n) =
∑

d|n d, and so
is multiplicative by Lemma 5.6. Similarly, the sum of kth powers of divisors
function σk(n) =

∑
d|n d

k is also multiplicative.

(iii) the number of distinct prime divisors function ω(n) is defined by

ω(n) =
∑
p|n

p prime

1,

so that if n =
∏t

i=1 p
ri
i is the canonical prime factorisation of n, then ω(n) = t.

Note that for any non-zero complex number c, the function cω(n) is multiplica-
tive (easy to check this!).

(iv) the number of prime divisors function Ω(n) is defined by

Ω(n) =
∑
pr‖n
p prime

r,

so that if n =
∏t

i=1 p
ri
i is the canonical prime factorisation of n, then Ω(n) =

r1 + r2 + · · ·+ rt.

(v) the Euler totient φ(n) is a multiplicative function (Theorem 5.5).

(vi) the Möbius function µ(n) is defined for natural numbers n by

µ(n) =

{
(−1)ω(n), when n is squarefree,

0, otherwise.
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Here, by a squarefree number, we mean an integer that is not divisible by the
square of any prime number. Thus, if n = p1p2 . . . pk with p1, . . . , pk distinct
primes, one has µ(n) = (−1)k, and it follows easily that µ(n) is multiplicative.

Note that, just as with our earlier discussion of the Euler totient, a function
that is multiplicative will be relatively easy to evaluate when its argument has
a known prime factorisation. For example, one can see rather easily that when
p is a prime number and h is a non-negative integer, then τ(ph) = h+ 1, and

σ(ph) =
h∑
r=0

pr =
pr+1 − 1

p− 1
,

and thus

τ(n) =
∏
pr‖n

(r + 1) and σ(n) =
∏
pr‖n

(
pr+1 − 1

p− 1

)
.

The Möbius inversion formulae The arithmetic function defined by (vi)
above, the Möbius function, has special properties that make it particularly
useful in studying averages of other arithmetic functions (and much else be-
sides). Recall that

µ(n) =

{
(−1)ω(n), when n is squarefree,

0, otherwise.

We define a rather trivial multiplicative function ν(n) by

ν(n) =

{
1, when n = 1,

0, otherwise.

Lemma 14.1. One has
∑

d|n µ(d) = ν(n).

Proof. Since µ(n) is a multiplicative function of n, it follows from Lemma 5.6
that

∑
d|n µ(d) is also multiplicative. But on writing f(n) =

∑
d|n µ(d), one

finds that

f(pα) =
α∑
h=0

µ(ph) = 1− 1 = 0, for α > 0,

and f(1) = µ(1) = 1. Thus, in view of the multiplicativity of f(n), one finds
that f(n) is zero unless n has no prime divisors, a circumstance that occurs
only when n = 1. This completes the proof of the theorem. �

We can now describe a certain duality between arithmetic functions, and
functions defined via divisor sums.

Theorem 14.2 (the Möbius inversion formulae). (i) Let f be any arithmetical
function, and define

g(n) =
∑
d|n

f(d).
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Then one has
f(n) =

∑
d|n

µ(d)g(n/d).

(ii) Suppose that g is any arithmetical function, and define

f(n) =
∑
d|n

µ(d)g(n/d).

Then one has
g(n) =

∑
d|n

f(d).

Proof. (i) Given that g(n) =
∑

d|n f(d), one obtains∑
d|n

µ(d)g(n/d) =
∑
d|n

∑
e|(n/d)

µ(d)f(e) =
∑
e|n

f(e)
∑
d|(n/e)

µ(d)

=
∑
e|n

f(e)ν(n/e) = f(n).

(ii) Given that f(n) =
∑

d|n µ(d)g(n/d), one obtains∑
d|n

f(d) =
∑
d|n

f(n/d) =
∑
d|n

∑
e|(n/d)

µ(e)g(n/(de))

=
∑
e|n

∑
d|(n/e)

µ(e)g(n/(de)) =
∑
e|n

∑
d|(n/e)

µ(e)g(d)

=
∑
d|n

g(d)
∑
e|(n/d)

µ(e) =
∑
d|n

g(d)ν(n/d) = g(n).

�

Note that Möbius inversion applies to all arithmetical functions, without
any hypothesis concerning whether or not they are multiplicative.

Example 14.3. Recall that we showed in the corollary to Lemma 5.6 that∑
d|n φ(d) = n. As an immediate consequence of the Möbius inversion formu-

lae, we deduce that

φ(n) =
∑
d|n

µ(d)(n/d) = n
∑
d|n

µ(d)/d.

Perfect numbers.

Definition 14.4 (Perfect numbers). A natural number n, for which the sum of
the positive divisors smaller than n is equal to n, is called a perfect number.

Equivalently, the natural number n is perfect if and only if σ(n) = 2n.
Examples include 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14, and 496.

Theorem 14.5. The natural number n is an even perfect number if and only
if n = 2p−1(2p − 1) for some prime number p for which 2p − 1 is prime.
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Proof. In one direction, observe that under the hypotheses of the statement of
the theorem, one has

σ(2p−1(2p − 1)) =

p−1∑
l=0

2l(2p − 1) +

p−1∑
m=0

2m

= (2p − 1)2 + (2p − 1) = 2
(
2p−1(2p − 1)

)
,

so that 2p−1(2p − 1) is indeed perfect.

In the other direction, suppose that n is an even perfect number, say n =
2km, with m an odd number. Then since n is perfect, one has σ(n) = 2n, and
so from the multiplicative property of σ(·), one has

2k+1m = 2(2km) = σ(2km) = σ(2k)σ(m) = (2k+1 − 1)σ(m),

whence 2k+1|σ(m), say σ(m) = 2k+1l. On substituting back into the previous
relation, we deduce that m = (2k+1−1)l. If l > 1, then m has distinct divisors
1, m and l, whence σ(m) > l + m + 1 > l + m = 2k+1l = σ(m), which
yields a contradiction. We are therefore forced to conclude that l = 1, whence
σ(m) = m + 1, and so m is prime. Thus we find that n = (2k+1 − 1)2k with
2k+1−1 prime, and the latter implies that k+1 is itself prime (convince youself
as to why this is true!). �

Notice that Theorem 14.5 shows that any even perfect number has the form
1
2
Mp(Mp + 1), where Mp is the Mersenne prime 2p − 1. It is suspected that

there are infinitely many Mersenne primes, though this remains unproved, and
hence infinitely many even perfect numbers (see GIMPS, the Great Internet
Mersenne Prime Search, at http://www.mersenne.org/, for more on Mersenne
primes). The largest known perfect number is 282589932(282589933− 1) (see p.2).
No odd perfect numbers are known, and it is conjectured that there are none.
If an odd perfect number exists, then it has at least nine distinct prime factors
(see P. P. Nielsen, Odd perfect numbers have at least nine distinct prime factors,
Math. Comp. 76 (2007), 2109-2126) and at least 300 digits in base ten (see
R. P. Brent, G. L. Cohen and H. J. J. te Riele, Improved techniques for lower
bounds for odd perfect numbers, Math. Comp. 57 (1991), 857-868).

15. Estimates for arithmetical functions

We now explore the “population statistics” of values of arithmetical func-
tions: what is the maximal/minimal size of such a function, the average size,
the variance, etc? In order properly to discuss such issues, we need to recall
some standard analytic notation.

Given functions f, g : R → R, with g taking positive values, we write
f(x) = O(g(x)) (for x > x0) when there exists some positive constant C for
which |f(x)| 6 Cg(x) (for x > x0).

Example 15.1. One has x = O(x2) for x > 1, 1/x2 = O(1) for x > 1, and
x = O(ex) for x > 0.
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There are two useful strategies to keep in mind when addressing questions
concerning estimates for arithmetic functions:

(i) in order to estimate the size of a multiplicative function f(n), one should
first estimate f(·) on prime powers, and then combine this information with
knowledge about the distribution of prime numbers;

(ii) If one wishes to estimate the average size of an arithmetical function g(n),
one can apply the Möbius inversion formulae to write g(n) in the shape

g(n) =
∑
d|n

f(d),

in which

f(n) =
∑
d|n

µ(d)g(n/d).

Frequently, one finds that this new function f(n) is reasonably well-behaved,
and then one has∑

16n6x

g(n) =
∑

16n6x

∑
d|n

f(d) =
∑

16d6x

∑
16m6x/d

f(d).

Here, in the last summation, we made the change of variable n = md. Thus
we obtain ∑

16n6x

g(n) =
∑

16d6x

f(d)
∑

16m6x/d

1 =
∑

16d6x

f(d)
⌊x
d

⌋
,

where, as usual, we write bθc for the greatest integer not exceeding θ. Thus
we see that

1

x

∑
16n6x

g(n) =
1

x

∑
16d6x

f(d)
(x
d

+O(1)
)

=
∑

16d6x

f(d)

d
+O

(
1

x

∑
16d6x

|f(d)|

)
.

In many circumstances, the first term on the right hand side of the last equa-
tion is of larger order of magnitude than the last term, and then one has the
asymptotic formula

1

x

∑
16n6x

g(n) ∼
∑

16d6x

f(d)/d,

a formula that is useful provided that the new average is easier to compute
than the original average. We illustrate these ideas with some examples.

Example 15.2. The Euler totient φ(n).

We obtained earlier the formula

φ(n) = n
∑
d|n

µ(d)/d,
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by using the Möbius inversion formulae. Following the above strategy, we find
that∑

16n6x

φ(n) =
∑

16n6x

∑
d|n

µ(d)n/d =
∑

16d6x

µ(d)
∑

16m6x/d

m

=
∑

16d6x

µ(d) · 1
2
bx/dc(bx/dc+ 1) =

∑
16d6x

µ(d)

(
x2

2d2
+O(x/d)

)

= 1
2
x2
∑

16d6x

µ(d)/d2 +O

( ∑
16d6x

|µ(d)|x/d

)
.

But ∑
16d6x

µ(d)/d2 =
∞∑
d=1

µ(d)/d2 +O

(∑
d>x

1/d2

)
= C +O(1/x),

where C =
∏

p(1− 1/p2) = 1/ζ(2) = 6/π2 (fact!). In addition, one has∑
16d6x

1

d
< 1 +

∫ x

1

dθ

θ
= O(log x).

Thus
1

x

∑
16n6x

φ(n) =
3

π2
x+O(log x).

In some sense, this means that the average order of φ(n) is (6/π2)n (why?).
On the other hand, the upper bound φ(n) 6 n is trivial (and for every prime
number p one has φ(p) = p − 1). It is possible, though harder, to show that
for all natural numbers n, the Euler totient φ(n) is asymptotically larger than
e−γn/ log log n, where γ = 0.577 . . . is Euler’s constant.

Example 15.3. The sum of divisors function σ(n).

In this instance we have the formula σ(n) =
∑

d|n d, and so∑
16n6x

σ(n) =
∑

16n6x

∑
d|n

n/d =
∑

16d6x

∑
16m6x/d

m

=
∑

16d6x

1
2
bx/dc(bx/dc+ 1) =

∑
16d6x

(
x2

2d2
+O(x/d)

)
.

But ∑
16d6x

1/d2 =
∞∑
d=1

1/d2 +O

(∑
d>x

1/d2

)
= ζ(2) +O(1/x),

and hence

1

x

∑
16n6x

σ(n) = 1
2
ζ(2)x+O(log x) =

π2

12
x+O(log x).

Example 15.4. The divisor function τ(n).
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In this instance, of course, one has τ(n) =
∑

d|n 1, and so∑
16n6x

τ(n) =
∑

16n6x

∑
d|n

1 =
∑

16d6x

∑
16m6x/d

1

=
∑

16d6x

bx/dc =
∑

16d6x

(x/d+O(1))

= x
∑

16d6x

1/d+O(x).

But (as a good exercise in calculus),∑
16d6x

1/d =
∑

16d6x

(∫ d+1/2

d−1/2

dt

t
+O(1/d2)

)
= log x+O(1).

Thus we deduce that

1

x

∑
16n6x

τ(n) = log x+O(1).

Perhaps it is worth noting that one can refine the above formula to obtain∑
16n6x

τ(n) = x log x+ (2γ − 1)x+O(
√
x),

where γ = 0.577 . . . is Euler’s constant.

Example 15.5. The number of squarefree numbers.

We turn our attention next to counting the number of squarefree numbers up
to x. Define

S(x) = card{1 6 n 6 x : n is squarefree}.
In order to analyse this sum, we need to have available a detector for squarefree
numbers. If we recall that the sum of the Möbius function over the divisors of
an integer n, which we called ν(n), is non-zero precisely when n = 1, in which
case it is 1, we are led to consider the expression∑

d2|n

µ(d).

Let m be the largest positive integer with m2|n. Then the above expression
is ∑

d|m

µ(d) = ν(m) =

{
1, when m is equal to 1, i.e. n is squarefree,

0, when m > 1, i.e. n is not squarefree.

Thus we find that

S(x) =
∑

16n6x

∑
d2|n

µ(d).
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But this expression has similar shape to those that we have considered before
in this section, and so we may analyse this sum similarly. By means of the
change of variable n = md2, one finds that

S(x) =
∑

16d6
√
x

∑
16m6x/d2

µ(d) =
∑

16d6
√
x

µ(d)bx/d2c

=
∑

16d6
√
x

µ(d)
( x
d2

+O(1)
)

= x
∑

16d6
√
x

µ(d)

d2
+O

 ∑
16d6

√
x

1

 .

But

∑
16d6

√
x

µ(d)/d2 =
∞∑
d=1

µ(d)

d2
+O

∑
d>
√
x

1/d2

 = 1/ζ(2) +O(1/
√
x).

Thus we conclude that

S(x) = x

(
1

ζ(2)
+O(1/

√
x)

)
+O(

√
x)

=
6

π2
x+O(

√
x).

Thus the “probability” that a randomly chosen positive integer is squarefree
is 6/π2. This provides the world’s worst method of calculating π (or rather
π2). As an exercise, consider the problem of counting the number of cubefree
integers up to x (those n satisfying the property that whenever m3 divides n,
then m = 1). What about k-free numbers? (those integers n satisfying the
property that whenever mk|n, then m = 1).

Example 15.6. The number of distinct prime divisors ω(n).

We observe that∑
16n6x

ω(n) =
∑

16n6x

∑
p|n

1 =
∑
p6x

∑
16n6x
p|n

1 =
∑
p6x

bx/pc.

At the end of section 3 we sketched an argument (as an exercise) for proving
that there are positive constants a and b with 0 < a < 1 < b for which one has

ax/ log x <
∑
p6x

1 < bx/ log x (x > 2).

These inequalities show that there is a constant c > 3 having the property
that, for all y > 2, the number of prime numbers between y and cy is at least
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y/ log y and at most c2y/ log(cy). Thus, we have∑
16n6x

ω(n) = x
∑
p6x

1/p+O(x)

6 x
∑

16j61+log x

∑
cj−1<p6cj

1

p
+O(x)

6 x
∑

16j61+log x

cj+1/(j log c)

cj−1
+O(x)

6 c2x
∑

16j61+log x

1/j +O(x).

Hence we deduce that when x is large enough, one has∑
16n6x

ω(n) 6 c2x log log x+O(x).

On the other hand,∑
16n6x

ω(n) = x
∑
p6x

1/p+O(x)

> x
∑

16j6log x

∑
cj−1<p6cj

1

p
+O(x)

> x
∑

26j6log x

cj−1/((j − 1) log c)

cj
+O(x)

> c−2x
∑

26j6log x

1/(j − 1) +O(x).

Hence ∑
16n6x

ω(n) > c−2x log log x+O(x).

Thus we deduce that

c−2 log log x+O(1) 6
1

x

∑
16n6x

ω(n) 6 c log log x+O(1).

In fact, one knows that asymptotically, one has a = b = 1, and so the average
size of ω(n) between 1 and x is asymptotically log log x.

Example 15.7. An upper bound for τ(n).

We show that for any positive number ε, one has τ(n) = O(nε) for n ∈ N. In
order to establish this estimate, we exploit the multiplicative property of τ(n),
and investigate the function

τ(n)

nε
=
∏
pj‖n

j + 1

pjε
.

If one has εj log p > log(j+1), then (j+1)p−jε < 1, and moreover (log(j+1))/j
is a decreasing function of j when j > e. Thus there exists a number C = C(ε),
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depending at most on the choice of ε, satisfying the property that whenever
p > C(ε), one has εj log p > log(j + 1). We therefore deduce that

τ(n)/nε 6
∏
pj‖n
p6C(ε)

j + 1

pjε

∏
p>C(ε)

1.

But since there are just finitely many primes not exceeding C(ε) (in fact,
fewer than C(ε) of them), the values of (j+1)p−jε are bounded above by some
number A(ε) for p 6 C(ε). Consequently,

τ(n)/nε 6
∏
p|n

p6C(ε)

A(ε) 6 A(ε)C(ε).

We therefore see that there is a positive number B = B(ε), depending at most
on ε, for which τ(n) 6 B(ε)nε for every natural number n, that is, for each
positive number ε, one has τ(n) = O(nε).

16. Diophantine approximation

Many important ideas in Number Theory stem from notions of Diophantine
approximation, which is to say rational approximations to real numbers with
prescribed properties.

Theorem 16.1 (Dirichlet, 1842). Let θ ∈ R and let Q be a real number
exceeding 1. Then there exist integers p and q with 1 6 q < Q and (p, q) = 1
such that |qθ − p| 6 1/Q.

Proof. We apply the Box Principle. Write N = dQe, and consider the N + 1
real numbers

0, 1, {θ}, {2θ}, . . . , {(N − 1)θ},
where here, and throughout, we write {x} for x − bxc. These N + 1 real
numbers all lie in the interval [0, 1]. But if we divide this unit interval into
N disjoint intervals of length 1/N , it follows that there must be two numbers
from the above set which necessarily lie in the same interval. The difference
between these two numbers has the shape qθ − p, where p and q are integers
with 0 < q < N . Thus we deduce that there exist integers p and q with
1 6 q < Q and |qθ − p| 6 1/Q. The coprimality condition is obtained easily
by dividing through by (p, q). �

Corollary 16.2. Whenever θ is irrational, there exist infinitely many distinct
pairs p ∈ Z and q ∈ N with (p, q) = 1 and |θ − p/q| < 1/q2.

Proof. Let Q > 2. Then by Dirichlet’s theorem on Diophantine approximation,
there exist p ∈ Z and q ∈ N with (p, q) = 1, q < Q and 0 < |θ − p/q| 6
1/(qQ) < 1/q2. Let Q′ be any real number exceeding |θ − p/q|−1. A second
application of Dirichlet’s theorem shows that there exist p′ ∈ Z and q′ ∈ N
with (p′, q′) = 1, 1 6 q′ < Q′ and

|θ − p′/q′| 6 1/(q′Q′) < |θ − p/q|/q′ 6 |θ − p/q|.
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Further, one has |θ − p′/q′| < 1/(q′)2. Thus, necessarily, one has p′/q′ 6= p/q.
By iterating this process, we obtain a sequence (pn/qn)∞n=1 of rational numbers
with

0 < |θ − pn/qn| < |θ − pn−1/qn−1| < · · · < |θ − p1/q1|,
and |θ − pi/qi| < 1/q2i , and hence infinitely many approximations p/q with
(p, q) = 1 and |θ − p/q| < 1/q2. �

The continued fraction algorithm This provides a bijective correspondence
between:

rational θ ↔ (finite continued fractions) (a0, a1, . . . , an),

n finite, ai ∈ N (i > 1), a0 ∈ Z, an > 2,

irrational θ ↔ (infinite continued fractions) (a0, a1, . . . ),

a0 ∈ Z, ai ∈ N (i > 1).

Algorithm: Given θ ∈ R, define the integers aj (j > 0) as follows.

Let a0 = bθc. If a0 = θ then stop.

If a0 6= θ, define θ1 by means of θ = a0 + 1/θ1, so that θ1 > 1.

Let a1 = bθ1c. If a1 = θ1 then stop.

. . .

At step n, we suppose that the integers a0, a1, . . . , an have been defined, that
θn ∈ R has been defined, and that an = bθnc. If an = θn then stop.

If an 6= θn, define θn+1 by means of θn = an + 1/θn+1, so that θn+1 > 1.

Let an+1 = bθn+1c. If an+1 = θn+1 then stop.

. . .

If this algorithm terminates, say with the sequence (a0, a1, . . . , an), then θ is
rational and

θ = a0 +
1

a1 +
1

a2 +
1

. . .+
1

an

.

It will be apparent shortly that when θ is rational, then necessarily the Con-
tinued Fraction Algorithm terminates.

For the above expansion, it is usually more convenient to write

θ = a0 +
1

a1+

1

a2+
. . .

1

an−1+

1

an
or θ = [a0; a1, . . . , an].

If the continued Fraction Algorithm does not terminate, so that an 6= θn for
each natural number n, then it follows (as we will see) that θ is irrational, and
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θ may be written in the form

θ = a0 +
1

a1+

1

a2+
. . .

1

an−1+
. . . or θ = [a0; a1, a2, . . . ].

Example 16.3. Write 57/32 as a continued fraction.

Put θ = 57/32. Then a0 = bθc = 1, and

θ1 =
1

57
32
− 1

=
32

25
.

Then a1 = bθ1c = 1, and

θ2 =
1

32
25
− 1

=
25

7
.

Then a2 = bθ2c = 3, and

θ3 =
1

25
7
− 3

=
7

4
.

Then a3 = bθ3c = 1, and

θ4 =
1

7
4
− 1

=
4

3
.

Then a4 = bθ4c = 1, and

θ5 =
1

4
3
− 1

= 3.

Then a5 = 3 and θ5 = a5, so stop.

In this way we find that 57/32 = [1; 1, 3, 1, 1, 3].

Example 16.4. Write
√

3 as a continued fraction.

Put θ =
√

3. Then a0 = b
√

3c = 1, and

θ1 =
1√

3− 1
= 1

2
(
√

3 + 1).

Then a1 = bθ1c = 1, and

θ2 =
1

1
2
(
√

3− 1)
=
√

3 + 1.

Then a2 = bθ2c = 2, and

θ3 =
1√

3− 1
= 1

2
(
√

3 + 1) = θ1,

and the sequence repeats.

In this way we find that
√

3 = [1; 1, 2, 1, 2, 1, 2, . . . ], a periodic continued
fraction that, by convention, we write as [1; 1, 2].

Example 16.5. Find the continued fraction expansion of 1
2
(10−

√
7).

Put θ = 1
2
(10−

√
7). Then a0 =

⌊
1
2
(10−

√
7)
⌋

= 3, and

θ1 =
1

1
2
(10−

√
7)− 3

=
2(4 +

√
7)

16− 7
= 1

9
(8 + 2

√
7).



64 TREVOR D. WOOLEY

Then a1 = bθ1c = 1, and

θ2 =
1

1
9
(8 + 2

√
7)− 1

=
9(−1− 2

√
7)

1− 28
= 1

3
(1 + 2

√
7).

Then a2 = bθ2c = 2, and

θ3 =
1

1
3
(1 + 2

√
7)− 2

=
3(−5− 2

√
7)

25− 28
= 5 + 2

√
7.

Then a3 = bθ3c = 10, and

θ4 =
1

(5 + 2
√

7)− 10
=
−5− 2

√
7

25− 28
= 1

3
(5 + 2

√
7).

Then a4 = bθ4c = 3, and

θ5 =
1

1
3
(5 + 2

√
7)− 3

=
3(−4− 2

√
7)

16− 28
= 1

2
(2 +

√
7).

Then a5 = bθ5c = 2, and

θ6 =
1

1
2
(2 +

√
7)− 2

=
2(−2−

√
7)

4− 7
= 1

3
(4 + 2

√
7).

Then a6 = bθ6c = 3, and

θ7 =
1

1
3
(4 + 2

√
7)− 3

=
3(−5− 2

√
7)

25− 28
= 5 + 2

√
7 = θ3,

and the sequence repeats.

In this way we find that

1
2
(10−

√
7) = [3; 1, 2, 10, 3, 2, 3, 10, 3, 2, 3, . . . ] = [3; 1, 2, 10, 3, 2, 3].

Definition 16.6. In the above description of the continued fraction algorithm,
and the resulting continued fraction expansion of a real number θ, the integers
ai are known as the partial quotients of θ, the real numbers θi are known as
the complete quotients of θ, and the rational numbers

pn
qn

= [a0; a1, . . . , an],

where pn and qn are relatively prime integers with qn > 1, are known as the
convergents to θ.

Theorem 16.7. Let an (n > 0) be the partial quotients of a real number
θ, let θn be the corresponding complete quotients, and pn/qn the associated
convergents. Then the integers pn and qn satisfy the recurrence relations

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

and for n > 2,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.
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Furthermore,
pnqn+1 − pn+1qn = (−1)n+1,

and when θ has an infinite continued fraction expansion, one has qn → ∞ as
n→∞, and limn→∞ pn/qn = θ.

Proof. We begin by establishing the claimed recurrences. Observe first that

p1
q1

=
a0a1 + 1

a1
= a0 +

1

a1
= [a0, a1],

and

p2
q2

=
a2p1 + p0
a2q1 + q0

=
a2(a0a1 + 1) + a0

a2a1 + 1
= a0 +

a2
a2a1 + 1

= a0 +
1

a1 +
1

a2

= [a0; a1, a2].

Thus the desired recurrences hold for n = 0, 1, 2, in view of the relations

1 = (a0, 1) = (a0a1 + 1, a1) = (a2, a2a1 + 1) = (a0a1a2 + a0 + a2, a2a1 + 1),

that yield the coprimality conditions 1 = (p0, q0) = (p1, q1) = (p2, q2).

Suppose then that the claimed recurrences hold for n 6 m−1, for a fixed m
with m > 3. We consider the continued fraction expansion [a1; a2, . . . , am], a
rational number associated with [a0; a1, . . . , am]. For j > 0, define the integers
p′j and q′j > 1 by means of the formula

p′j
q′j

= [a1; a2, . . . , aj+1] and (p′j, q
′
j) = 1.

Then by the inductive hypothesis, one has p′0 = a1, q
′
0 = 1, p′1 = a1a2 + 1,

q′1 = a2,

p′n = an+1p
′
n−1 + p′n−2 and q′n = an+1q

′
n−1 + q′n−2 (2 6 n 6 m− 1).

But

[a0; a1, . . . , aj+1] = a0 +
q′j
p′j
,

and hence
pj+1

qj+1

=
a0p
′
j + q′j
p′j

for 0 6 j 6 m− 1.

Thus, since (a0p
′
j + q′j, p

′
j) = (q′j, p

′
j) = 1 and (pj+1, qj+1) = 1, we obtain

pj+1 = a0p
′
j + q′j and qj+1 = p′j for 0 6 j 6 m− 1.

But then the recurrence formulae for p′j and q′j imply that

pm−ampm−1 − pm−2
= a0(p

′
m−1 − amp′m−2 − p′m−3) + (q′m−1 − amq′m−2 − q′m−3)

= 0

and
qm − amqm−1 − qm−2 = p′m−1 − amp′m−2 − p′m−3 = 0.
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Then the inductive hypothesis holds with m + 1 in place of m, and thus the
desired recurrence relations hold.

We prove the relation pnqn+1 − pn+1qn = (−1)n+1 by induction, noting that

p0q1 − p1q0 = a0a1 − (a0a1 + 1) = −1

and

pnqn+1 − pn+1qn = pn(an+1qn + qn−1)− qn(an+1pn + pn−1)

= −(pn−1qn − pnqn−1).

Suppose now that θ has an infinite continued fraction expansion. Then, in
view of the positivity of the integers ai for i > 1, it follows from the relation
qn = anqn−1+qn−2 that qn > qn−1+qn−2 for n > 2, whence qn →∞ as n→∞.

Finally, since pnqn+1 − pn+1qn = (−1)n+1, we find that∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ =
1

qnqn+1

.

But θ = [a0; a1, . . . , an, θn+1], where 0 < 1/θn+1 6 1/an+1. Thus we find that
θ lies between pn/qn and pn+1/qn+1 for each natural number n, whence

|θ − pn/qn| 6 1/(qnqn+1).

In particular, it follows that limn→∞ pn/qn = θ. �

Suppose that θ = s/t with (s, t) = 1 and t > 1, which is to say that θ is
rational. Then for every convergent pn/qn, one has either pn/qn = s/t, or else

1

tqn
6

∣∣∣∣st − pn
qn

∣∣∣∣ 6 1

qnqn+1

.

Since qn+1 > t for n sufficiently large, it follows that there is a natural number n
with θ = pn/qn. Thus rational numbers possess terminating continued fraction
expansions.

It is a fact that θ is a quadratic irrational number if and only if its continued
fraction expansion is ultimately periodic. Meanwhile, certain real numbers
have continued fraction expansions that are elegant to describe, such as

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ].

In the above examples we have noted that the continued fraction expansions
of quadratic irrational numbers seem to have special properties (periodic con-
tinued fraction expansions). Motivated by this observation, we now discuss
rational approximations to algebraic numbers.

Definition 16.8. We say that the real number θ is algebraic and irrational
of degree d if there exists a polynomial f(t) ∈ Z[t] such that (i) deg(f) = d,
(ii) f is irreducible over Q, and (iii) one has f(θ) = 0.

Note that the degree d of θ is unique, for if f and g are distinct polynomials
for which f(θ) = g(θ) = 0, then by the division algorithm for polynomials,
there is some greatest common divisor h of f and g for which h(θ) = 0. But
then f and g cannot both be irreducible.
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Definition 16.9. We say that the real number θ is transcendental if θ is
not algebraic of any degree.

Recall that an argument based on countability shows that not all real num-
bers are algebraic, and indeed that almost all real numbers are transcendental.
However, it was not until 1844 that any explicit transcendental number was
exhibited — or indeed that transcendental numbers were known to exist at all.

Given an algebraic number α of degree d, consider the set of all polynomials
f(t) ∈ Z[t] for which f(α) = 0. As already noted above, by using the division
algorithm for polynomials, it follows that there exists a unique minimal degree
for non-trivial members of this set. If we then restrict to polynomials wherein
the set of coefficients have no common factor, and the leading coefficient is pos-
itive, then we obtain a unique polynomial pα(t) ∈ Z[t], known as the minimal
polynomial of α.

Theorem 16.10 (Liouville, 1844). Suppose that α is an algebraic number of
degree n > 1. Then there exists a positive constant c = c(α) such that whenever
p ∈ Z and q ∈ N, one has |α− p/q| > c/qn.

Proof. We may plainly suppose that α ∈ R, for otherwise the conclusion of the
theorem is immediate. Write f(t) for the minimal polynomial of α, so that
f(t) ∈ Z[t] has degree n. Then by the Mean Value Theorem, given p ∈ Z and
q ∈ N, there exists a real number ξ with ξ lying between α and p/q, such that

f(α)− f(p/q) = (α− p/q)f ′(ξ).

But by hypothesis, the number α is irrational, and so f(p/q) 6= 0. We therefore
see that

|qnf(p/q)| > 1.

Moreover, since without loss of generality we may suppose that |α− p/q| < 1,
we find that |ξ| < |α|+ 1, and hence

|f ′(ξ)| 6 sup
|z|<|α|+1

|f ′(z)|.

Writing c(α)−1 for the latter supremum, we conclude that

1/qn 6 |f(p/q)| = |f(α)− f(p/q)| = |α− p/q| · |f ′(ξ)| 6 c(α)−1|α− p/q|,

whence

|α− p/q| > c(α)/qn.

�

It is worthwhile noting a simple enhancement of Liouville’s theorem that is
of utility in applications.

Theorem 16.11. Suppose that α is a non-zero algebraic number of degree
n > 1. Then there exists a positive constant c = c(α) such that whenever p ∈ Z
and q ∈ N satisfy (p, q) = 1, and q is sufficiently large, one has |α−p/q| > c/qn.
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Proof. When α is algebraic of degree exceeding 1, the desired conclusion is
immediate from Liouville’s theorem. It remains only to consider the situation
in which α is rational, say α = r/s for some r ∈ Z and s ∈ N with (r, s) = 1.
But then, whenever p ∈ Z and q ∈ N satisfy (p, q) = 1, and q is larger than s,
one has r/s 6= p/q, and so

|α− p/q| =
∣∣∣∣rs − p

q

∣∣∣∣ =

∣∣∣∣qr − psqs

∣∣∣∣ > 1

qs
.

Thus, when the degree of α is 1, the desired conclusion holds with c(α) =
1/(2s). �

Corollary 16.12. Let θ =
∑∞

n=1 2−n!. Then θ is transcendental.

Proof. Suppose that θ is algebraic of some degree d > 1. Then by Theorem
16.11 there exists a constant c = c(θ) > 0 such that whenever p ∈ Z and q ∈ N
satisfy (p, q) = 1, one has

|θ − p/q| > c(θ)/qd.

For each natural number j, write

pj = 2j!
j∑

n=1

2−n! and qj = 2j!.

Since pj is odd, we have (pj, qj) = 1. Thus

|θ − pj/qj| =
∞∑

n=j+1

2−n! < 21−(j+1)! 6 2−j·j! = q−jj .

Thus there exist infinitely many p ∈ Z and q ∈ N with (p, q) = 1 and satisfying
the property that |θ−p/q| < c(θ)q−(d+1) (just take j large enough that j > d+1
and qj = 2j! > c(θ)−1), contradicting our earlier consequence of Theorem 16.11.
This contradiction confirms that θ cannot be algebraic, and consequently is
transcendental. �

In fact one can show that whenever a > 2 and b > 3 are integers, then the
number

∑∞
n=1 a

−bn is transcendental. It is also known that π is transcendental
(Lindemann, 1882), and that e is transcendental (Hermite, 1873). Indeed,
Lindemann proved that whenever α1, . . . , αn are distinct algebraic numbers,
and β1, . . . , βn are non-zero algebraic numbers, then β1e

α1 + · · · + βne
αn 6= 0.

Since eiπ + 1 = 0, it follows that π cannot be algebraic.

We note also the theorem of Gelfond-Schneider (1934) that resolved Hilbert’s
7th problem: whenever α 6= 0, 1 is algebraic, and β is algebraic and irrational,

the number αβ is transcendental. Thus, for example, one sees that 2
√
2 and

eπ = (−1)−i are both transcendental.

Open Problem: Is it true that e and π are algebraically independent? That
is to say, is it true that there is no non-trivial polynomial F (x, y) ∈ Z[x, y]
with the property that F (e, π) = 0?
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17. Diophantine equations: Pell’s equation

We investigate the solubility of the equation

x2 − dy2 = 1,

for a fixed integer d that is not a perfect square, in integers x and y. This turns
out to be a topic intimately connected with the continued fraction expansion of√
d. We note that the equation x2− dy2 = 1 always has the (trivial) solutions

(x, y) = ±(1, 0), so the relevant problem is of determining whether there are
additional solutions, and how many such solutions exist.

Theorem 17.1. Suppose that d > 0 is not a perfect square. Then the Dio-
phantine equation x2 − dy2 = 1 has infinitely many solutions.

Proof. We consider Diophantine approximations to
√
d. By Dirichlet’s theorem

on Diophantine approximation, for each integer Q > 1 there exist p ∈ Z
and q ∈ N with 1 6 q < Q such that |p − q

√
d| 6 1/Q. Given any such

approximation, we have

|p+ q
√
d| 6 Q−1 + 2q

√
d 6 3q

√
d < 3Q

√
d.

Thus we deduce that

|p2 − dq2| = |(p− q
√
d)(p+ q

√
d)| < 3

√
d.

Since
√
d is irrational, moreover, there are infinitely many pairs (p, q) with this

property, and hence infinitely many pairs (p, q) for which p2 − dq2 takes the

same fixed value (for there are at most 6
√
d + 1 available values). Suppose

then that p2− dq2 = N has infinitely many integral solutions. Note that since√
d is irrational, then N 6= 0. Since there are infinitely many solutions to the

aforementioned equation, we may select two solutions, say (p, q) and (p′, q′),
with the property that p 6= ±p′ and q 6= ±q′, and p ≡ p′ (mod N) and q ≡ q′

(mod N). But then we have

(pp′ − dqq′)2 − d(pq′ − p′q)2 = (pp′)2 + d2(qq′)2 − d(pq′)2 − d(p′q)2

= (p2 − dq2)((p′)2 − d(q′)2) = N2,

whence
x = (pp′ − dqq′)/N, y = (pq′ − p′q)/N

provides a non-trivial integral solution of the equation x2 − dy2 = 1. In order
to check that (x, y) 6= (±1, 0), observe that if x = ±1 and y = 0, then

pp′ = dqq′ ±N and pq′ = p′q,

whence
p2p′ = dq(pq′)± pN = p′dq2 ± pN,

and so

p′(p2 − dq2) = ±pN ⇒ Np′ = ±Np ⇒ p = ±p′ and q = ±q′.
The latter contradicts our earlier hypothesis, and hence shows that (x, y) 6=
(±1, 0).
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Given this single non-trivial solution (x, y) of x2 − dy2 = 1, we generate
infinitely many others by noting that whenever (u, v) is any one solution, then

(u2 + dv2)2 − d(2uv)2 = (u2 − dv2)2 = 1,

whence (u2 + dv2, 2uv) is a second solution with larger x-coordinate. By iter-
ating this process we plainly obtain infinitely many distinct non-trivial solu-
tions. �

Definition 17.2. There is a unique solution (x, y) of the equation x2−dy2 = 1
in which x and y have their smallest positive values. This solution is called
the fundamental solution.

Theorem 17.3. Suppose that d > 0 is not a perfect square. Let (x1, y1) be
the fundamental solution to the equation x2 − dy2 = 1. Then the equation
x2 − dy2 = 1 has its solutions given by

x+
√
dy = ±(x1 +

√
dy1)

n (n ∈ Z).

Proof. We begin by associating to each solution (x, y) of x2− dy2 = 1 the real

number x+ y
√
d. Observe that given two such solutions, say (x, y) and (u, v),

and the associated real numbers ε = x+ y
√
d and ε′ = u+ v

√
d, the numbers

εε′ and ε/ε′ also yield solutions. For we have

εε′ = (x+ y
√
d)(u+ v

√
d) = (xu+ dvy) +

√
d(uy + vx),

and

(xu+ dvy)2 − d(uy + vx)2 = (x2 − dy2)(u2 − dv2) = 1,

and similarly,

ε/ε′ =
(x+ y

√
d)(u− v

√
d)

u2 − dv2
= (xu− dvy) +

√
d(−xv + uy),

and

(xu− dvy)2 − d(uy − vx)2 = (x2 − dy2)(u2 − dv2) = 1.

Write now ε = x1 + y1
√
d for the real number corresponding to the fun-

damental solution (x1, y1). Let (x′, y′) be any other solution of the equation

x2 − dy2 = 1 with (x′, y′) 6= (±1, 0), and write ε′ = x′ + y′
√
d. If 0 < ε′ < 1,

then we may consider instead the solution associated with the real number
x′ − y′

√
d = 1/(x′ + y′

√
d). In addition, if ε′ < 0, we instead consider the

solution associated with the real number −x′−y′
√
d. In this way, we find that

there is no loss of generality in supposing that ε′ > 1.

Next observe that since ε > 1, then for some natural number m we have
εm 6 ε′ < εm+1. In view of our initial discussion, therefore, there is a solution
(r, s) corresponding to the real number ε′/εm. But 1 6 ε′/εm < ε, so from our
hypothesis that ε corresponds to the fundamental solution, and so is minimal
amongst all positive solutions, we deduce that ε′ = εm. Thus we find that by
our earlier discussion, one has x′ + y′

√
d = ±(x1 +

√
dy1)

m for some integer
m. �
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Continued fractions and Pell’s equation The solutions of Pell’s equation
have a natural interpretation in terms of the convergents to the continued
fraction expansion of

√
d.

Example 17.4. Recall that
√

3 = [1; 1, 2]. We consider convergents pn/qn to√
3, and the corresponding values of p2n − 3q2n. It is useful in this context to

recall that when θ = [a0; a1, . . . ], then the convergents pn/qn to θ satisfy the
relations

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

In the case at hand, we obtain

p0 = 1 and q0 = 1⇒ p20 − 3q20 = −2,

p1 = 1 · 1 + 1 = 2 and q1 = 1⇒ p21 − 3q21 = 4− 3 = 1,

p2 = 2p1 + p0 = 5 and q2 = 2q1 + q0 = 3⇒ p22 − 3q22 = 25− 3 · 9 = −2,

p3 = p2 + p1 = 7 and q3 = q2 + q1 = 4⇒ p23 − 3q23 = 49− 3 · 16 = 1,

and so on. So we find that for each natural number n, the pair (x, y) =
(p2n−1, q2n−1) provides a solution of the equation x2 − 3y2 = 1. Thus the
general solution of the equation x2 − 3y2 = 1 is provided by the relation
x+ y

√
3 = ±(2 +

√
3)m (m ∈ Z).

18. Pell’s equation: the structure of solutions in detail.

We analyse the connection between continued fraction expansions of
√
d,

and solutions of the Pell equation x2 − dy2 = 1, in some detail.

Lemma 18.1. The continued fraction [a0; a1, a2, . . . ] represents a quadratic
irrational number if and only if the sequence (a0, a1, . . . ) is ultimately periodic.

Proof. We first show that when θ = [a0, a1, . . . , ak−1, ak, ak+1, . . . , ak+m−1],
then θ is a quadratic irrational number. Write φ = [ak; ak+1, . . . , ak+m−1].
Then we have

φ = [ak; ak+1, . . . , ak+m−1, φ].

If we write p′M/q
′
M for the Mth convergent to φ, then

p′0 = ak, q′0 = 1, p′1 = akak+1 + 1, q′1 = ak+1,

and we have

p′M = ak+Mp
′
M−1 + p′M−2, q′M = ak+Mq

′
M−1 + q′M−2 (2 6M 6 m− 1),

with

p′M
q′M

=
p′M−1ak+M + p′M−2
q′M−1ak+M + q′M−2

= [ak; ak+1, . . . , ak+M ] (2 6M 6 m− 1).

The recurrences also apply for non-integral coefficients, so that

φ = [ak; ak+1, . . . , ak+m−1, φ] =
p′m−1φ+ p′m−2
q′m−1φ+ q′m−2

.
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Thus we obtain q′m−1φ
2 + (q′m−2 − p′m−1)φ − p′m−2 = 0, whence φ is quadratic

irrational. We next write pM/qM for the Mth convergent to θ, and deduce
similarly that

θ = [a0, a1, . . . , ak−1, φ] =
pk−1φ+ pk−2
qk−1φ+ qk−2

.

But φ is quadratic irrational, and so θ must also be quadratic irrational, as
can be confirmed from the formula

α + β
√
d

γ + δ
√
d

=
(α + β

√
d)(γ − δ

√
d)

γ2 − dδ2
=

(αγ − dβδ) + (βγ − αδ)
√
d

γ2 − dδ2
.

Conversely, suppose that θ is a quadratic irrational, so that it satisfies an
equation of the shape aθ2 + bθ+ c = 0 with a, b, c ∈ Z subject to the condition
that d = b2 − 4ac > 0 is not a square. Write f(x, y) = ax2 + bxy + cy2, and
note that one then has f(x, y) = (x, y)A(x, y)T , where

A =

(
a 1

2
b

1
2
b c

)
is a matrix with det(A) = ac − 1

4
b2 = −1

4
d. The discriminant of f is d =

−4 det(A). Suppose that pn/qn is the nth convergent to θ. Let

γ =

(
pn pn−1
qn qn−1

)
,

so that det(γ) = pnqn−1 − pn−1qn = (−1)n+1. Then γ takes f to a quadratic
form

fn(x, y) = f(pnx+ pn−1y, qnx+ qn−1y) = anx
2 + bnxy + cny

2,

say, having the same discriminant as f , since

det(γTAγ) = (det(γ))2det(A) = det(A).

Moreover, one has

an = f(pn, qn) and cn = f(pn−1, qn−1) = an−1.

But f(θ, 1) = 0, and we have f(pn/qn, 1) = f(pn.qn)/q2n = an/q
2
n, whence

f(pn/qn, 1) = f(pn/qn, 1)− f(θ, 1)

= a((pn/qn)2 − θ2) + b(pn/qn − θ).

Thus we see that

|an| = q2n|θ − pn/qn| · |a(θ + pn/qn) + b|.

But |θ − pn/qn| 6 1/(qnqn+1) < 1/q2n, and thus

|an| < |a|(2|θ|+ |pn/qn − θ|) + |b| 6 |a|(2|θ|+ 1) + |b|.

We therefore deduce that |an| is bounded independently of n. Since cn = an−1,
the same conclusion holds also for cn. Moreover, one has b2n − 4ancn = d, and
so |bn| 6

√
d+ 4ancn is also bounded independently of n.
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Next write θn for the complete quotients of θ. Then for n > 1, one has

θ =
pnθn+1 + pn−1
qnθn+1 + qn−1

,

whence

fn(θn+1, 1) = f(pnθn+1 + pn−1, qnθn+1 + qn−1)

= (qnθn+1 + qn−1)
2f(θ, 1) = 0.

Since there are only finitely many available choices for the coefficients of the
polynomial fn, it follows that there are only finitely many possible choices for
θn. Hence, for some positive numbers l and m, one has θl+m = θl, and so the
continued fraction expansion of θ is ultimately periodic. �

Fact 18.2.
√
d has continued fraction expansion of the shape

[a0; a1, a2, a3, . . . , a3, a2, a1, 2a0].

Lemma 18.3. When d is a positive integer that is not a square, the continued
fraction expansion of

√
d takes the form [a0; a1, . . . , am].

Proof. The conclusion of the lemma follows from the assertion that 1/(
√
d −

b
√
dc) has purely periodic continued fraction expansion. The latter is a conse-

quence of the general conclusion that θ has purely periodic continued fraction
expansion, when θ is quadratic irrational, provided that θ and the conjugate
θ′ of θ satisfy θ > 1 and −1 < θ′ < 0. For suppose that θ = [a0; a1, . . . ]. Then
since θn = an+1/θn+1, by conjugation we obtain the relation θ′n = an+1/θ′n+1.
An inductive argument now shows that −1 < θ′n < 0 for n > 0. In order to con-
firm this assertion, observe first that θ′0 = θ′ satisfies the claimed inequalities.
Next, since an > 1 for all n, should one have −1 < θ′n < 0, then

−1 <
1

−an + θ′n
< 0,

and thus −1 < θ′n+1 < 0. The desired conclusion does indeed therefore fol-
low by induction. But θ is a quadratic irrational, so has ultimately periodic
continued fraction expansion as a consequence of Lemma 18.1. Then one has
θi = θj for some j > i, and so likewise 1/θ′i = 1/θ′j. But then one has

|ai−1 − aj−1| = |(θ′i−1 − θ′j−1)− (1/θ′i − 1/θ′j)|
= |θ′i−1 − θ′j−1| < 1,

so that ai−1 = aj−1. It follows that θi−1 = θj−1, whence by repeating this
argument one deduces that θ = θ0 = θj−i. In this way we find that θ has
purely periodic continued fraction expansion. �

Theorem 18.4. Suppose that d is a positive integer which is not a perfect
square, and that the continued fraction expansion [a0; a1, . . . ] of

√
d has con-

vergents pn/qn, and is ultimately periodic with period m. Then the only positive
solutions (x, y) to the Pell equation x2− dy2 = 1 are given by (x, y) = (pn, qn),
where n = lm− 1 for some natural number l, with n restricted to odd values.
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Proof. We begin by noting that whenever (x, y) is a solution to the equation
x2− dy2 = 1 with x > 0 and y > 0, then necessarily x/y is a convergent to the

continued fraction expansion of
√
d. For we have

x2 − dy2 = 1 ⇒ x− y
√
d = 1/(x+ y

√
d) > 0,

whence x > y
√
d and 0 < x− y

√
d < 1/(2y

√
d). Thus we deduce that∣∣∣√d− x/y∣∣∣ < 1/(2y2).

We claim that whenever θ ∈ R and x/y is a rational number with (x, y) = 1
satisfying |θ − x/y| < 1/(2y2), then x/y is necessarily a convergent to the
continued fraction expansion of θ. In order to establish this claim, recall that
whenever pn/qn and pn+1/qn+1 are successive convergents, then

pnqn+1 − pn+1qn = (−1)n+1 ⇒ det

(
pn pn+1

qn qn+1

)
= (−1)n+1.

Then the equations

upn + vpn+1 = x

uqn + vqn+1 = y

possess an integral solution (u, v). Note that if u = 0, then the coprimality of
x and y ensures that v = ±1, whence x/y = pn+1/qn+1 is a convergent to θ,
and similarly if v = 0. Thus we may suppose that u 6= 0 and v 6= 0. Since
qn → ∞ as n → ∞, moreover, we may choose n so that qn 6 y < qn+1. But
uqn + vqn+1 = y, and hence u and v must have opposite signs. Thus, using the
fact that qnθ − pn and qn+1θ − pn+1 have opposite signs, we deduce that

|yθ − x| = |u(qnθ − pn) + v(qn+1θ − pn+1)| > |qnθ − pn|.

But since |θ − x/y| < 1/(2y2), it follows that∣∣∣∣xy − pn
qn

∣∣∣∣ 6 ∣∣∣∣θ − x

y

∣∣∣∣+

∣∣∣∣θ − pn
qn

∣∣∣∣
6

(
1

y
+

1

qn

)
|yθ − x|

<
2

qn
· 1

2y
=

1

qny
,

wherein we made use of the inequality y > qn. But the latter inequality ensures
that x/y = pn/qn is a convergent to θ, completing the proof of our claim.

Now let pn/qn be the convergents to the continued fraction expansion of
√
d,

and let θn be the corresponding complete quotients. Then

√
d =

pnθn+1 + pn−1
qnθn+1 + qn−1

, (18.1)
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whence

qn
√
d− pn =

−pn(qnθn+1 + qn−1) + qn(pnθn+1 + pn−1)

qnθn+1 + qn−1

=
pn−1qn − pnqn−1
qnθn+1 + qn−1

=
(−1)n

qnθn+1 + qn−1
.

It follows that whenever n is even, one has qn
√
d > pn, whence

p2n − dq2n = (pn − qn
√
d)(pn + qn

√
d) < 0.

Then p2n − dq2n = 1 can be satisfied only when n is odd.

Next, on recalling (18.1), we find that

(pn − qn
√
d)θn+1 = qn−1

√
d− pn−1,

whence

(p2n − dq2n)θn+1 = (pn + qn
√
d)(qn−1

√
d− pn−1)

= (pnqn−1 − pn−1qn)
√
d+ (dqnqn−1 − pnpn−1)

= (−1)n+1
√
d+N,

for a suitable integer N . It follows that if p2n − dq2n = 1, so that necessarily

n is odd, then one has θn+1 =
√
d + N , for some integer N . We now make

use of the fact that the continued fraction expansion of
√
d takes the form

[a0; a1, . . . , am], a conclusion that we established in Lemmata 18.1 and 18.3
above. One therefore has √

d = a0 + 1/θ1,

where θ1 has purely periodic continued fraction expansion. Thus we have

θn+1 =
√
d+N and θn+1 = an+1 + 1/θn+2,

and
√
d = a0 + 1/θ1, where θ1 > 1 and θn+2 > 1. Consequently,

an+1 + 1/θn+2 =
√
d+N = a0 +N + 1/θ1 ⇒ an+1 = a0 +N,

and thus θn+2 = θ1. But θ1 is purely periodic with periodm, and thusm|(n+1).
So if p2n − dq2n = 1, then n is odd and n = lm− 1 for some natural number l.

Thus far we have given necessary conditions for (pn, qn) to give a solution.
We now show that these conditions are sufficient. Suppose then that n = lm−1
is odd. Then by the periodicity of the continued fraction expansion of θ, one
has θ1 = θn+2. Consequently,

√
d =

pn+1θ1 + pn
qn+1θ1 + qn

.

But
√
d = a0 + 1/θ1, whence θ1 = 1/(

√
d− a0), and on substitution we obtain

√
d(qn+1 + qn(

√
d− a0)) = pn+1 + pn(

√
d− a0),

whence on equating coefficients of
√
d and 1, we obtain the relations

qn+1 − a0qn = pn and dqn = pn+1 − a0pn.



76 TREVOR D. WOOLEY

On eliminating a0, we deduce that

p2n − dq2n = pnqn+1 − pn+1qn = (−1)n+1 = 1,

on noting that n is presumed to be odd. Thus (x, y) = (pn, qn) is indeed a
solution of x2 − dy2 = 1. �

Example 18.5. Determine the integer solutions to the equation x2−69y2 = 1.

From question 2 of Homework 11, we have
√

69 = [8; 3, 3, 1, 4, 1, 3, 3, 16]. This
continued fraction is periodic with period 8. Writing pn/qn for the convergents
to the continued fraction expansion of

√
69, we find that the fundamental

solution is given by (p7, q7) (notice that this index 7 is odd). Using recurrence
relations from class, we have

p0
q0

=
8

1
,

p1
q1

=
3 · 8 + 1

3
=

25

3
,

p2
q2

=
3 · 25 + 8

3 · 3 + 1
=

83

10
,

p3
q3

=
1 · 83 + 25

1 · 10 + 3
=

108

13
,

p4
q4

=
4 · 108 + 83

4 · 13 + 10
=

515

62
,

p5
q5

=
1 · 515 + 108

1 · 62 + 13
=

623

75
,

p6
q6

=
3 · 623 + 515

3 · 75 + 62
=

2384

287
,

p7
q7

=
3 · 2384 + 623

3 · 287 + 75
=

7775

936
,

so the fundamental solution of x2 − 69y2 = 1 is (x, y) = (7775, 936). Indeed,
one has

77752 = 60450625

69 · 9362 = 60450624.

Thus, the solutions (x, y) of x2 − 69y2 = 1 are given by

x+ y
√

69 = ±(7775 + 936
√

69)n (n ∈ Z).

It is now easy to compute examples of further solutions. For example, since

(7775 + 936
√

69)2 = 77752 + 69 · 9362 + 2 · 7775 · 936
√

69,

we find that (x, y) = (120901249, 14554800) is the second smallest solution of
x2 − 69y2 = 1.
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19. A sketch of binary quadratic forms

A binary quadratic form is a homogeneous quadratic polynomial in two
variables, which is to say, one of the shape f(x, y) = a2 + bxy+ cy2 (with fixed
a, b, c ∈ Z). The discriminant of this form is d = b2 − 4ac.

Observe that

4af(x, y) = (2ax+ by)2 − (b2 − 4ac)y2 = (2ax+ by)2 − dy2.
Thus, the binary form f is:

(a) indefinite (meaning that it takes both positive and negative values)
when d > 0;

(b) positive (or negative) definite (meaning that it takes only positive (or
only negative) values for x, y ∈ Z) when d < 0;

(c) positive (or negative) semi-definite (meaning that it takes only non-
negative (or only non-positive) values for x, y ∈ Z) when d = 0.

Our goal in this section is to understand (in sketch form only) which integers,
and in particular which prime numbers, are represented by binary quadratic
forms.

We begin with a consideration of the discriminants d that can occur. Note
that since

b2 ≡

{
0 (mod 4), when 2|b,
1 (mod 4), when 2 - b,

then it follows that d = b2 − 4ac ≡ 0, 1 (mod 4). Moreover, both eventualities
can occur. Indeed, the forms{

x2 − 1
4
dy2, when d ≡ 0 (mod 4),

x2 + xy + 1
4
(1− d)y2, when d ≡ 1 (mod 4),

each have discriminant d in the respective cases, and are called the principal
forms with discriminant d.

Next we consider the circumstances in which forms are morally speaking
“the same”, at least so far as the set of integers represented by the forms.
For plainly f(x, y) represents the same set of integers as does f(±x,±y), for
x, y ∈ Z, and also the same set of integers as f(x ± y, y). This leads us to a
consideration of invertible linear transformations between pairs of integers.

Definition 19.1. The group of 2 × 2 matrices with integral coefficients and
determinant 1, denotes by Γ = SL2(Z), is called the modular group.

Definition 19.2. The quadratic forms

f(x, y) = ax2 + bxy + cy2 and g(x, y) = Ax2 +Bxy + Cy2

are equivalent, and we write f ∼ g, if there exists γ ∈ Γ, say γ =

(
p q
r s

)
, such

that g(x, y) = f(px+ qy, rx+ sy).

Theorem 19.3. The relation ∼ between binary quadratic forms is an equiva-
lence relation.
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Note that, since the mapping γ ∈ Γ is invertible with γ−1 ∈ Γ, it follows
that when f ∼ g, then the set of integers represented by f(x, y) is identical to
the set of integers represented by g(x, y) (for x, y ∈ Z). Moreover, we can view
the quadratic form f(x, y) = ax2 + bxy+ cy2 in matrix form by observing that

ax2 + bxy + cy2 = (x, y)

(
a 1

2
b

1
2
b c

)(
x
y

)
= xTFx,

say, where F =

(
a 1

2
b

1
2
b c

)
. One then finds that in the situation described with

g ∼ f , one has

g(x, y) = (γx)TF (γx) = xT(γTFγ)x.

This shows that

disc(g) = −4det(G) = −4 det(γ)2 det(F ) = −4 det(F ) = disc(f).

Thus, equivalent quadratic forms have the same discriminant.

Definition 19.4. We say that f(x, y) represents n ∈ Z if there exists (x0, y0) ∈
Z with f(x0, y0) = n. This representation is proper if (x0, y0) = 1.

Theorem 19.5. When f ∼ g, the (proper) representations of n by f are in
one-to-one correspondence with the (proper) representations of n by g.

Theorem 19.6. Suppose that n and d are integers with n 6= 0. Then there
exists a binary quadratic form of discriminant d which properly represents n if
and only if the congruence x2 ≡ d (mod 4|n|) has a solution.

Proof. We first suppose that the congruence x2 ≡ d (mod 4|n|) has a solution,
say b2 − d = 4nc, for some b, c ∈ Z. Then the form

f(x, y) = nx2 + bxy + cy2

has integral coefficients, discriminant d = b2 − 4nc, and represents n properly,
since f(1, 0) = n. This establishes the reverse implication.

In the other direction, suppose that f has discriminant d and n = f(p, r) for
some p, r ∈ Z with (p, r) = 1. By the Euclidean algorithm, there exist q, s ∈ Z
with ps − qr = 1, and then f ∼ f ′, with corresponding matrices F ′ = γTFγ,

and γ =

(
p q
r s

)
. But then

f ′(x, y) = a′x2 + b′xy+ c′y2 = a(px+ qy)2 + b(px+ qy)(rx+ sy) + c(rx+ sy)2,

where a′ = f(p, r) = n. Moreover, since f ∼ f ′, we have disc(f ′) = disc(f),
and thus b′2 − 4nc′ = d. In particular, the congruence x2 ≡ d (mod 4|n|) has
solution x = b′. �

Observe that if there is just one equivalence class of binary forms with
discriminant d, then Theorem 19.6 can be applied to understand which integers
are represented by any fixed binary quadratic form of discriminant d. This is
because, in such circumstances, any fixed form of discriminant d is equivalent
to any other form of discriminant d.
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We now come to the big idea of Gauss in this context, that of classifying the
individual binary quadratic forms representing each equivalence class of forms.
Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form whose discriminant
d is not a perfect square. We say that f is reduced if either

−|a| < b 6 |a| < |c|,
or

0 6 b 6 |a| = |c|.

Theorem 19.7. If f is a binary quadratic form with discriminant d not equal
to a perfect square, then f is equivalent to a reduced binary quadratic form.

Definition 19.8. We write H(d) for the number of equivalence classes of
binary quadratic forms of discriminant d with leading coefficient positive. This
quantity H(d) is known as the class number of d.

One can check that H(d) 6 2d when d > 0, and that H(d) 6 8
3
|d| when

d < 0. A highlight of the mid-twentieth century was the following result.

Theorem 19.9 (Baker, 1966; Stark, Heegner). When d < 0, one has H(d) = 1
only when d = −3,−4,−7,−8,−11,−19,−43,−67,−163.

Example 19.10. We determine the prime numbers represented by the binary
form x2 + y2. This is of course a familiar example that we have previously
analysed, but serves to illustrate the ideas of this section. Here we have a
binary form of discriminant d = −4, and so H(d) = 1 and all binary quadratic
forms of discriminant −4 with positive leading coefficient are equivalent. We
therefore deduce from Theorem 19.6 that p is represented by x2+y2 if and only
if x2 ≡ −4 (mod 4p) is soluble. When p = 2, we check that x2 ≡ −4 (mod 8)
has solution x = 2, and when p is odd we instead determine the conditions in
which

1 =

(
−4

p

)
=

(
−1

p

)
= (−1)(p−1)/2,

a condition that holds if and only if p ≡ 1 (mod 4). Hence we see that the
prime p is represented by x2 + y2 if and only if either p = 2 or p ≡ 1 (mod 4).

Example 19.11. We determine the prime numbers represented by the binary
forms of disriminant −11. Here the principal binary quadratic form of disc-
rimant −11 is x2 + xy + 3y2. Since H(−11) = 1 (which can be checked by
considering the conditions to be a reduced form), all binary quadratic forms of
discriminant −11 with positive leading coefficient are equivalent. We therefore
deduce from Theorem 19.6 that p is represented by x2 +xy+ 3y2 if and only if
x2 ≡ −11 (mod 4p) is soluble. Since x2 ≡ −3 (mod 8) is not soluble, it follows
that 2 is not represented. When p is odd, we have conditions to check modulo 4
and modulo p. The first condition is checked by noting that x2 ≡ −11 (mod 4)
has solution x = 1. For the second to be satisfied, we require

1 =

(
−11

p

)
= (−1)(p−1)/2

(
11

p

)
= (−1)(p−1)/2(−1)(11−1)(p−1)/4

( p
11

)
=
( p

11

)
.
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This condition is satisfied if and only if p is a square modulo 11, so p is
congruent to one of 1, 4, 9, 16, 25 modulo 11. We therefore conclude that the
prime p is represented by x2 +xy+ 3y2 if and only if p ≡ 1, 3, 4, 5, 9 (mod 11).
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