
MA59800ANT ANALYTIC THEORY OF FUNCTION FIELDS.
PROBLEMS 5

TO BE HANDED IN BY 6PM FRIDAY 8TH NOVEMBER 2024

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

Throughout, we take p to be a prime number, put q = ph, and denote Fq[t] by A.

A1. Suppose throughout that k ⩾ 2.
(a) Prove that ∫

T

∣∣∣∣ ∑
|x|⩽qX

e(αxk)

∣∣∣∣2 dα ⩾ qX+1.

(b) Apply Hölder’s inequality to deduce that for each real number s with s ⩾ 1, one has∫
T

∣∣∣∣ ∑
|x|⩽qX

e(αxk)

∣∣∣∣2s dα ⩾ (qX+1)s.

A2. Suppose throughout that k ⩾ 2.
(a) Show that when |α| < q−1(qX)−k, one has∣∣∣∣ ∑

|x|⩽qX

e(αxk)

∣∣∣∣ = qX+1.

(b) Prove that when s and k are positive integers, one has∫
T

∣∣∣∣ ∑
|x|⩽qX

e(αxk)

∣∣∣∣2s dα ⩾ qk−1(qX+1)2s−k.

B3.Suppose throughout that k ⩾ 2.
(a) Show that when s ⩾ 1, one has∫

T

∣∣∣∣ ∑
|x|⩽qX

e(αxk)

∣∣∣∣2s dα ⩾ (qX)s + (qX)2s−k.

(b) Suppose that 0 < s < 1 and p > k. By applying Hua’s lemma, show that for each
ε > 0, one has ∫

T

∣∣∣∣ ∑
|x|⩽qX

e(αxk)

∣∣∣∣2s dα ≫ (qX)s−ε.
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B4.Suppose that k ∈ N, that X is a large real number, and that Q is a real number
with 1 ⩽ Q < 1

2
kX. Denote by M(Q) the union of the arcs

M(g, a) = {α ∈ T : |gα− a| < qQ(qX)−k},
with a, g ∈ Fq[t], g monic, 0 ⩽ |a| < |g| ⩽ qQ and (a, g) = 1, and put m(Q) = T \M(Q).

(a) Suppose that α ∈ M(Q) and r ∈ Fq[t] \ {0}. Show that rα ∈ M(Q+ deg(r)) + A.
(ii) Suppose that rα ∈ M(Q)+A with r ∈ Fq[t]\{0}. Show that α ∈ M(Q+deg(r))+A.
(iii) Suppose that α ∈ m(Q) and r ∈ Fq[t] \ {0}. Show that rα ∈ m(Q− deg(r)) + A.
(iv) Suppose that rα ∈ m(Q)+A with r ∈ Fq[t]\{0}. Show that α ∈ m(Q−deg(r))+A.

B5. Suppose throughout that k ⩾ 2 and p > k. Write

S(g, a) =
∑
|r|<|g|

e(ark/g).

(a) Suppose that a, g ∈ Fq[t], g monic, 0 ⩽ |a| < |g| and (a, g) = 1. Show that

S(g, a) ≪ |g|1−21−k+ε.

(b) Show that when s is an integer with s > 2k, one has∑
|a|<|g|
(a,g)=1

|S(g, a)|s ≪ |g|s−1−2−k

.

C6. (a) When 0 ⩽ j ⩽ k, write τ = τ(k, j) for the non-negative integer satisfying pτ∥
(
k
j

)
.

Show that

τ =
∞∑
l=1

({
j

pl

}
+

{
k − j

pl

}
−
{
k

pl

})
,

where {θ} = θ − ⌊θ⌋.
(b) Let the base p expansion of k be k = anp

n + . . .+ a1p+ a0, with 0 ⩽ ai < p for each
i. Show that

(
k
j

)
is coprime to p if and only if j has the shape j = bnp

n + . . .+ b1p+ b0,

with 0 ⩽ bi ⩽ ai for each i.

(c) Apply induction to show that ∆j(x
k;h) is not indentically 0 as a polynomial in x

whenever 0 ⩽ j ⩽ a0 + . . .+ an.

C7.Let the base p expansion of k be k = anp
n + . . .+ a1p+ a0, with 0 ⩽ ai < p for each

i. Prove that whenever 1 ⩽ j ⩽ a0 + . . .+ an, then for each positive number ε, one has∫
T

∣∣∣∣ ∑
|x|⩽qX

e(αxk)

∣∣∣∣2j dα ≪ (qX)2
j−j+ε.
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