
MA59800ANT ANALYTIC THEORY OF FUNCTION FIELDS.
PROBLEMS 6

TO BE HANDED IN BY 6PM WEDNESDAY 4TH DECEMBER 2024

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

Throughout, we take p to be a prime number, put q = ph, and denote Fq[t] by A.

A1. Suppose that N ∈ K∞. Use the definition of the function e(α) to prove that when
n ⩾ 0, one has ∫

|α|<q−n

e(Nα) dα =

{
q−n, when |N | < qn,

0, otherwise.

A2. Suppose that (k, q − 1) = 1. Prove that for each m ∈ Fq[t], one has

J∞(m) =

{
qs−1, when k|deg(m) and m is not exceptional,

qs−1 − 1, otherwise.

B3. Suppose that k ∈ N and char(Fq) ∤ k. Let π be a monic irreducible polynomial.
(i) Show that∑

0⩽|u1|<|π|

∑
0⩽|u2|<|π|

e

(
a(u1 + u2π)

k

π2

)
=

∑
0⩽|u1|<|π|

e

(
auk

1

π2

) ∑
0⩽|u2|<|π|

e

(
kauk−1

1 u2

π

)
.

(ii) Deduce that whenever (a, π) = 1, one has S(π2, a) = |π|.

B4. (a) Let k ⩾ 2. Suppose that π is monic and irreducible in A, and moreover one has
|π| > (k − 1)2. Prove (without assuming that char(Fq) > k) that every polynomial m
in A is congruent to a sum of k-th powers modulo π. [Hint: study the proof of Lemma
19.4].

(b) Deduce that when |π| > (k − 1)2 and s ⩾ k + 1, then for each m ∈ A, there exist
w1, . . . , ws ∈ A such that π ∤ w1 and wk

1 + . . .+ wk
s ≡ m (mod π).

B5. When r ∈ N, let

I∗r (P ) =

∫
|β|<(qP+1)1−k

|f(β;P )|2r dβ.

(a) Show that when char(Fq) ∤ k and r ⩾ k + 1, there is a constant J∗
∞ = J∗

∞(q, r, k) for
which

I∗r (P ) = J∗
∞(qP )2r−k +O((qP )2r−k−1/k).

(b) Show that when char(Fq) ∤ k and r ⩾ k + 1, one has J∗
∞ ⩾ qr − 1.
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C6.When r ∈ N, let
S =

∑
g∈A+

∑
0⩽|a|<|g|
(a,g)=1

|g|−2r|S(g, a)|2r.

(a) Show that when char(Fq) > k and r ⩾ 2k−1 + 1, the infinite series S converges
absolutely.

(b) Show that, under the same conditions, one has S =
∏

π T
∗(π), where

T ∗(π) =
∞∑
l=0

∑
0⩽|a|<|πl|
(a,π)=1

|πl|−2r|S(πl, a)|2r.

(c) Show that, under the same conditions, one has 1 ⩽ S ≪ 1.

C7. Obtain an asymptotic formula for∫
T
|f(α;P )|2r dα,

valid whenever char(Fq) > k and r ⩾ 2k−1 + 1.
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