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0. Introduction: review of algebraic prerequisites

0.1. Motivation. Galois theory emerges from attempts to understand the
solutions of polynomial equations, and in particular to address the problem
of what makes one solution of a polynomial different from another. Thus, we
learn early in school that the equation z2 + 1 = 0 has two complex solutions,
namely i and −i, where i is formally defined to be

√
−1. Question: can we

tell i apart from −i in any intrinsic sense? In a wider context, if we were
to construct our whole complex world using −i in place of i, would we even
notice? The answer of course is “No!”.

The ambiguity between i and −i can be exploited. It is recognised through
a homomorphism σ (complex conjugation) having the property that σ(i) = −i
and σ(r) = r for all real numbers r. In particular, the map σ interchanges
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2 GALOIS THEORY

the roots i and −i of z2 + 1 = 0. Thus, if w = a + bi with a, b ∈ R, then
σ(w) = a− bi. To see the usefulness of the mapping σ, recall that the field of
complex numbers C = {a+ bi : a, b ∈ R} is algebraically closed, meaning that
every polynomial equation with complex coefficients of positive degree has a
solution in C. We will discuss algebraic closure in greater generality later in
the course.

Example 1. Consider the cubic polynomial f(z) = z3 + az2 + bz + c, with
a, b, c ∈ R. Since C is algebraically closed, the equation f(z) = 0 has three
complex roots, say α1, α2 and α3, and for the sake of the present discussion
we will suppose these to be distinct. The familiar consequence of the action of
σ is that f has either 1 or 3 real solutions, as we now show. Since

σ(f(z)) = (σ(z))3 + σ(a)(σ(z))2 + σ(b)σ(z) + σ(c) = f(σ(z)),

it follows that f(z) = 0 has the solution σ(θ) whenever it has the root θ. Thus,
one has {α1, α2, α3} = {σ(α1), σ(α2), σ(α3)}, as sets. If σ(αj) = αj for all j,
then of course all of the αj are real. Otherwise, by relabelling indices, we may
suppose that σ(α1) = α2, which implies that σ(α2) = α1. But now the only
possibility is that σ(α3) = α3, so that α3 is real and neither α1 nor α2 is real.
This shows that f(z) = 0 does indeed have either 1 or 3 real solutions.

The critical aspect of the argument that we just deployed was that the
mapping σ permutes the solutions of f(z) = 0 in a manner that is incompatible
with having precisely 2 non-real roots.

Exercise 1. What would have happened in Example 1 were the roots not dis-
tinct? What if f had been of odd degree d > 3?

Exercise 2. Suppose that the polynomials f(x, y, z) and g(x, y, z) are homoge-
neous of respective odd degrees d and e, and have real coefficients. We identify
two solutions (x1, y1, z1) and (x2, y2, z2) of the simultaneous equations

f(x, y, z) = g(x, y, z) = 0 (1)

as being equal if one solution is a non-zero scalar multiple of the second, so

(x1, y1, z1) = λ(x2, y2, z2),

for some λ ∈ C\{0}. It is a consequence of Bézout’s theorem that whenever f
and g are independent, then the number of non-zero complex solutions of (1),
counted with multiplicity, is precisely de. Why do we know that at least one
of these solutions is equivalent to a real solution? (Argue as in Example 1).

This course seeks to understand the relationship between the structure of
fields defined by adjoining roots of polynomials (to the base field), on the one
hand, and the group structure of associated permutations of these roots, on
the other – in a sweeping generalisation of the simple example that we have
just explored.
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0.2. Review of algebraic prerequisites. We will assume familiarity with
the basic aspects of algebra contained, for example, in the prerequisite courses
on algebra, or the basic chapters from the books by Garling [1] or Grillet [2].

Our basic objects of study are commutative rings R with unity (by which
we mean a multiplicative identity element, labelled 1 by convention), and their
corresponding polynomial rings R[t]. Recall that when R is an integral domain,
then R[t] is also an integral domain. Further, when K is a field, then one has
a division algorithm for K[t]. Thus, when f, g ∈ K[t], and f ̸= 0, then there
exist unique q, r ∈ K[t] such that

g = qf + r and deg(r) < deg(f).

This property permits us to develop properties of K[t] analogous to those of
Z. When r = 0, we say that f divides g and write f |g. Otherwise we write
f ∤ g. A highest common factor (or greatest common divisor) of f and g is any
polynomial d having the property that all common divisors of both f and g
divide d. Such a highest common factor of f and g may be computed using
the Euclidean algorithm for polynomials. Thus, we put r−1 = f , r0 = g, and
define qi and ri via the division algorithm for i ≥ 1 via the relation

ri−2 = qiri−1 + ri with deg(ri) < deg(ri−1).

For some non-negative integer I, one has rI = 0, and then a highest common
factor of f and g is rI−1. By applying these relations in reverse, one determines
a, b ∈ K[x] satisfying the property that d = af+bg, and d is a highest common
factor of f and g.

An irreducible polynomial π ∈ K[t] is a non-constant polynomial which is
not the product of two non-constant polynomials of smaller degree. When such
an irreducible polynomial divides gh for any g, h ∈ K[t], one has either π|g or
π|h. Consequently, whenever f ∈ K[t] is monic and deg(f) ≥ 1, then f can be
written as a product of irreducible monic polynomials uniquely up to the order
of the factors. In particular, the polynomial ring K[t] is a unique factorisation
domain when K is a field. On recalling that when K is a field, then K[t] is a
principal ideal domain, it follows that whenever π ∈ K[t] is irreducible, then
the quotient ring K[t]/(π) is a field (since the ideal (π) is a maximal proper
ideal in K[t]).

Our favourite simple examples of fields in this course are Q and Fp (the
finite field of p elements), when p is a rational prime.

Example 2. The polynomial f(t) = t3 + t + 1 is irreducible over F2[t]. To see
this, observe that if f were to have a factorisation f = gh with g and h each
of positive degree, then without loss of generality g is monic of degree 1 and
h is monic of degree 2. But then either g = t or g = t + 1. Since the division
algorithm yields f = t(t2 + 1) + 1 and f = (t + 1)(t2 + t) + 1, we see that
neither t nor t+1 divides f , whence f is irreducible over F2[t]. It follows that
the quotient ring F2[t]/(t

3 + t + 1) forms a field. The elements are the cosets
β + (t3 + t + 1), where β ∈ {0, 1, t, t + 1, t2, t2 + 1, t2 + t, t2 + t + 1}. Thus
F2[t]/(t

3 + t+ 1) forms a field having 8 elements.
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When R is a ring, we say that α ∈ R is a root of f ∈ R[t] when f(α) = 0.
When α ∈ K and f ∈ K[t], one has f(α) = 0 if and only if (t−α)|f . With this
language, in the field K = F2[t]/(t

3 + t+ 1), the polynomial f(t) = t3 + t+ 1
has the root α = t+ (t3 + t+ 1), since

f(α) = t3 + t+ 1 + (t3 + t+ 1) = 0 + (t3 + t+ 1),

which is the 0-element in K. In particular, while the polynomial f ∈ F2[t] may
be irreducible, having no root over F2, we have extended the field F2 to a new
field K in which the polynomial f does have a root. This field extension is the
focus of our attention in the next section of the course.

The fact that when K is a field and π ∈ K[t] is irreducible, then K[t]/(π) is
a field, rests on an observation useful in a wider context: the non-zero cosets
of K[t]/(π) have multiplicative inverses. Thus, if f ∈ K[t] is not divisible by
π, then it follows that there exist a, b ∈ K[t] such that 1 = af + bπ, whence
af ∈ 1 + (π). We see in this way that a + (π) is the multiplicative inverse
of f + (π) in K[t]/(π). One consequence of this relation is that when α is a
root of π(t), then 1 = a(α)f(α), so that f(α)−1 = a(α). Notice here that no
generality would have been lost were we to restrict a(t) to have degree smaller
than deg(π) (check this for yourself!).

1. Field extensions and algebraic elements

1.1. Field extensions. The informal introduction of a field extension at the
end of the last section requires development if it is to robustly serve our pur-
poses in our development of the theory of fields. Our goal in this section is to
develop a rigorous and flexible framework for such discussion. The first chal-
lenge is to reconcile that in our construction of the field L = K[t]/(π), with
K the base field and π ∈ K[t] irreducible, the field K is not really contained
inside L, and yet we would like to view L as extending K.

Recall that when R and R′ are both commutative rings with unity, then the
mapping φ : R → R′ is a homomorphism if, for all x, y ∈ R, one has

(i) φ(x+ y) = φ(x) + φ(y);
(ii) φ(xy) = φ(x)φ(y);
(iii) φ(1) = 1.

Definition 1. When K and L are fields, we say that L is an extension of K if
there is a homomorphism φ : K → L. We then talk about the field extension
(φ,K,L).

Suppose that such a homomorphism φ exists. We know ker(φ) is an ideal
of K. But since K is a field, its only ideals are {0} and K. Moreover, one
has φ(1) = 1 and 1 ̸= 0, so 1 ̸∈ ker(φ). Hence, we must have ker(φ) ̸= K,
so that ker(φ) = {0}, meaning that φ is injective (that is, an embedding, or
a monomorphism). Consequently, when L is an extension of K, the field L
contains an isomorphic image of K, namely φ(K).
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Example 3.

(i) The field extension C over R is more formally the triple (φ,R,C), where
φ : R → C is the homomorphism given by

r 7→ r + 0 ·
√
−1;

(ii) Let L = Q/(t2−2). Then the field extension L over Q is more formally
the triple (φ,Q, L), where φ : Q → L is the homomorphism given by

a 7→ a+ (t2 − 2);

(iii) Let K be a field and let L = K(t), the field of fractions of the polyno-
mial ring K[t]. Then the field extension L over K is more formally the
triple (φ,K,L), where φ : K → L is the homomorphism given by

a 7→ a.

Proposition 1.1. Suppose that L is a field extension of K with associated
embedding φ : K → L. Then L forms a vector space over K, under the
operations

(vector addition) ψ : L× L→ L given by (v1, v2) 7→ v1 + v2

(scalar multiplication) τ : K × L→ L given by (k, v) 7→ φ(k)v.

Proof. It is an exercise in algebra to check the axioms for L to be a vector
space over K. Note that for a ∈ K and v ∈ L, we define the scalar multiple
a · v by a · v = τ(a, v) = φ(a)v. □

It is convenient to identify the image φ(K) of K inside L with K itself. We
then write K for φ(K), and refer to the field extension L : K (or sometimes
L/K). Thus, for a ∈ K and v ∈ L, we write av for a · v.

Definition 2. Suppose that L : K is a field extension. We define the degree of
L : K to be the dimension of L as a vector space over K. We use the notation
[L : K] to denote the degree of L : K. Further, we say that L : K is a finite
extension if [L : K] <∞.

Definition 3. We say that M : L : K is a tower of field extensions if M : L
and L : K are field extensions, and in this case we say that L is an intermediate
field (relative to the extension M : K).

Theorem 1.2 (The Tower Law). Suppose that M : L : K is a tower of field
extensions. Then M : K is a field extension, and [M : K] = [M : L][L : K].

Proof. It is easy to check that M : K is a field extension. To show that
one has [M : K] = [M : L][L : K], first suppose that [L : K] = r < ∞ and
[M : L] = s <∞. Let {x1, . . . , xr} be a basis for L over K, and let {y1, . . . , ys}
be a basis for M over L. Then it follows, as we now show, that

B = {xi · yj : 1 ≤ i ≤ r, 1 ≤ j ≤ s}

is a basis for M over K.
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We first show that B is a spanning set for M over K. Consider any element
z of M . Since {y1, . . . , ys} spans M over L, there exist elements a1, . . . as ∈ L
for which

z = a1 · y1 + . . .+ as · ys.
But {x1, . . . , xr} spans L over K, and so for each index j with 1 ≤ j ≤ s, there
exist elements bji ∈ K (1 ≤ i ≤ r) for which

aj = bj1 · x1 + . . .+ bjr · xr.

Hence we find that

z =
r∑
i=1

s∑
j=1

bji · (xi · yj) ∈ span(B).

We now show that B is linearly independent over K. Suppose that for some
ξji ∈ K (1 ≤ i ≤ r, 1 ≤ j ≤ s), one has

r∑
i=1

s∑
j=1

ξji · (xi · yj) = 0.

Then one has
s∑
j=1

ηj · yj = 0,

where

ηj =
r∑
i=1

ξji · xi ∈ L (1 ≤ j ≤ s).

The linear independence of {y1, . . . , ys} over L shows that ηj = 0 for each j,
whence

r∑
i=1

ξji · xi = 0 (1 ≤ j ≤ s).

But then the linear independence of {x1, . . . , xr} over K shows that ξji = 0 for
each i and j. We are forced to conclude that B is indeed linearly independent
over K, and hence forms a basis for M over K. In particular,

[M : K] = card(B) = rs = [L : K][M : L],

and the desired conclusion follows in this first case.

Suppose next that [M : K] = n <∞. Then there is a basis {z1, . . . , zn} for
M over K. Since L contains an isomorphic copy of K, we see that {z1, . . . , zn}
spans M over L, and so [M : L] ≤ n < ∞. Since L is a subspace of M , the
dimension of L over K is bounded above by the dimension of M over K, so
[L : K] ≤ n < ∞. In this way, we deduce from our preceding argument that,
since [M : L] <∞ and [L : K] <∞, we have [M : K] = [M : L][L : K].

We can conclude from the above arguments that [M : K] <∞ if and only if
[M : L] <∞ and [L : K] <∞. Hence [M : K] = ∞ if and only if [M : L] = ∞
or [L : K] = ∞, and so we always have [M : K] = [M : L][L : K]. □
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Remark. Suppose that L : K andM : L are field extensions withK ⊆ L ⊆M
and [L : K] = [M : K] < ∞. Then as vector spaces over K, the field L is a
subspace of M of the same dimension as M , and so L must be equal to M .

More generally, if L : K and M : L are field extensions with associated
homomorphisms φ : K → L and ψ : L→M , then we have

ψ ◦ φ(K) ⊆ ψ(L) ⊆M,

and as vector spaces over ψ ◦ φ(K), the field ψ(L) is a subspace of M . So if
[L : K] = [M : K] then the dimension of ψ(L) is equal to the dimension of M ,
whence ψ(L) =M .

Remark. By iterating the Tower Law, one finds that a sequence of field
extensions Kn : Kn−1, Kn−1 : Kn−2, . . . , K1 : K0 (written more compactly as
the tower Kn : Kn−1 : . . . : K1 : K0) satisfies

[Kn : K0] = [Kn : Kn−1][Kn−1 : Kn−2] · · · [K1 : K0].

Corollary 1.3. Suppose that L : K is a field extension for which [L : K] is a
prime number. Then whenever L : M : K is a tower of field extensions with
K ⊆M ⊆ L, one has either M = L or M = K.

Proof. Suppose that [L : K] = p. Then by the Tower Law, one has

[L :M ][M : K] = p,

so that either [L : M ] = 1 or [M : K] = 1. By our earlier remark, in the first
case we see that M = L, and in the second that M = K. □

1.2. Algebraic elements. We begin by extending embeddings associated
with field extensions to polynomial rings associated with those fields.

Proposition 1.4. Suppose that K and L are fields and that φ : K → L is a
homomorphism. With t and y denoting indeterminates, extend the homomor-
phism φ to the mapping ψ : K[t] → L[y] by defining

ψ(a0 + a1t+ · · ·+ ant
n) = φ(a0) + φ(a1)y + · · ·+ φ(an)y

n.

Then ψ : K[t] → L[y] is an injective homomorphism. Also, when φ : K → L is
surjective, then ψ : K[t] → L[y] is surjective and maps irreducible polynomials
in K[t] to irreducible polynomials in L[y].

This is an exercise for the reader (check this for yourself!). Notice that,
viewing a ∈ K as a constant polynomial, one has ψ(a) = φ(a). It is there-
fore convenient to abuse notation henceforth by using φ to denote both the
homomorphism from K into L, and the mapping from K[t] into L[y]. Where
confusion is easily avoided, we may also identify t and y, and refer simply to
the injective homomorphism φ : K[t] → L[t] that restricts to φ : K → L.

Definition 4. Suppose that L : K is a field extension with associated embed-
ding φ. Suppose also that α ∈ L.

(i) We say that α is algebraic over K when α is the root of φ(f) for some
non-zero polynomial f ∈ K[t].
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(ii) If α is not algebraic over K, then we say α is transcendental over K.
(iii) When every element of L is algebraic over K, we say that the field L

is algebraic over K.

Definition 5. Suppose that L : K is a field extension with K ⊆ L, and that
α ∈ L. We define the evaluation map Eα : K[t] → L by putting Eα(f) = f(α)
for each f ∈ K[t].

One easily verifies the following conclusion.

Proposition 1.5. Suppose L : K is a field extension with K ⊆ L, and α ∈ L.
Then Eα is a ring homomorphism.

Note that ker(Eα) = {0} if and only if α is transcendental over K. Similarly,
one has ker(Eα) ̸= {0} if and only if α is algebraic over K.

Proposition 1.6. Let L : K be a field extension with K ⊆ L, and suppose
that α ∈ L is algebraic over K. Then

I = ker(Eα) = {f ∈ K[t] : f(α) = 0}

is a nonzero ideal of K[t], and there is a unique monic polynomial mα(K) ∈
K[t] that generates I.

Proof. Since α is algebraic over K, we find that I ̸= {0}. One easily checks
that I is an ideal, and since K[t] is a PID, it follows that I has a generator that
can be scaled to be monic. In order to confirm uniqueness of this generator,
suppose that (g) = I = (h) with g and h both monic. Then we have h = gx
and g = hy for some x, y ∈ K[t], whence h = gx = hxy, so that xy = 1. But
g and h are both monic, and thus x = 1 and y = 1, whence g = h. □

Definition 6. Suppose that L : K is a field extension with K ⊆ L, and
suppose that α ∈ L is algebraic over K. Then the minimal polynomial of
α over K is the unique monic polynomial mα(K) having the property that
ker(Eα) = (mα(K)).

Theorem 1.7. Suppose that L : K is a field extension, and that α ∈ L is
algebraic over K. Let g be the minimal polynomial mα(K) of α over K. Then
g is irreducible over K, and K[t]/(g) is a field.

Proof. To simplify our argument, we identify K with its isomorphic image in
L. We have seen that the evaluation map Eα is a homomorphism with

ker(Eα) = {f ∈ K[t] : f(α) = 0 } = (g),

where g = mα(K). The Fundamental Homormorphism Theorem shows that
K[t]/(g) is isomorphic to a subring of L, and since L is an integral domain,
one finds that K[t]/(g) is also an integral domain. Thus (g) is a prime ideal.
But K[t] is a Euclidean domain and hence a PID, and in a PID any prime
ideal is maximal. We therefore conclude that (g) is a maximal ideal, whence g
is irreducible. The maximality of (g) also ensures that K[t]/(g) is a field. □
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Before establishing that field extensions may be defined that supply roots
of irreducible polynomials, we recall that given a field extension L : K with
associated embedding φ : K → L, there is a canonical extension of φ to a
homomorphism from K[t] to L[y] defined by putting

φ(c0 + c1t+ . . .+ cnt
n) = φ(c0) + φ(c1)y + . . .+ φ(cn)y

n.

This homomorphism φ is injective as a consequence of Proposition 1.4, and
thus we may refer to the embedding φ : K[t] → L[y] as being associated to
the field extension L : K.

Theorem 1.8. Let K be a field, and suppose that f ∈ K[t] is irreducible. Then
there exists a field extension L : K, with associated embedding φ : K[t] → L[y],
having the property that L contains a root of φ(f).

Proof. We set L = K[t]/(f), and set about proving that this is a field having all
of the asserted properties. Observe first that since f is irreducible and K[t] is a
Euclidean domain, and hence a PID, then the ideal I = (f) is maximal. Thus
L is indeed a field. Moreover, by defining φ : K → L by putting φ(k) = k + I
for each k ∈ K, one confirms easily that φ is a homomorphism, and hence that
L : K is a field extension with associated embedding φ, extending canonically
to an embedding φ : K[t] → L[y].

It remains to show that L contains a root of ϕ(f). Write

f = a0 + a1t+ · · ·+ ant
n,

with ai ∈ K (0 ≤ i ≤ n) and an ̸= 0. We put α = t + I. Then, denoting by
(φ(f))(α) the polynomial φ(f) evaluated at α, we find that

(φ(f)) (α) =
n∑
j=0

φ(aj)α
j =

n∑
j=0

(aj + I)(t+ I)j

=
n∑
j=0

(ajt
j + I) =

( n∑
j=0

ajt
j

)
+ I.

Thus (φ(f)) = f + I = 0 + I, since f ∈ I. We therefore conclude that α ∈ L
is a root of φ(f). □

Definition 7. Let L : K be a field extension with K ⊆ L.

(i) When α ∈ L, we denote by K[α] the smallest subring of L containing
K and α, and by K(α) the smallest subfield of L containing K and α;

(ii) More generally, when A ⊆ L, we denote by K[A] the smallest subring
of L containing K and A, and by K(A) the smallest subfield of L
containing K and A.

Proposition 1.9. Let L : K be a field extension with K ⊆ L. Let A ⊆ L and

C = {C ⊆ A : C is a finite set}.

Then K(A) = ∪C∈CK(C). Further, when [K(C) : K] <∞ for all C ∈ C, then
K(A) : K is an algebraic extension.
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Proof. This is Problem 2 of Homework Problem Set 2. □

Proposition 1.10. Let L : K be a field extension with K ⊆ L, and suppose
that α ∈ L. Then

K[α] = {c0 + c1α + · · ·+ cdα
d : d ∈ Z≥0, c0, . . . , cd ∈ K},

and

K(α) = {f/g : f, g ∈ K[α], g ̸= 0} .

Proof. Let

R = Eα(K[t]) = {c0 + c1α + · · ·+ cdα
d : d ∈ Z≥0, c0, . . . , cd ∈ K}.

One easily confirms that R is a subring of L containing K and α. Also, if R′

is any other subring of L containing K and α, then since R′ is closed under
addition and multiplication, one sees that every element f of R also lies in R′.
Thus any subring of L containing K and α necessarily contains R, whence R
is the smallest subring of L containing K and α.

Next, let Q be the field of fractions of K[α], so that

Q = {f/g : f, g ∈ K[α], g ̸= 0 } .

Then Q is a subfield of L containing K and α. If Q′ is any subfield of L
containing K and α, then Q′ contains K[α], and hence every element of Q also
lies in Q′. So Q′ must contain Q, and Q is the smallest subfield of L containing
K and α. □

The next theorem ensures that when α is algebraic over a field K, then
K(α) has a particularly compact description.

Theorem 1.11. Let L : K be a field extension with K ⊆ L, and suppose that
α ∈ L is algebraic over K.

(i) The ring K[α] is a field, and K[α] = K(α);
(ii) Let n = degmα(K). Then {1, α, α2, . . . , αn−1} is a basis for K(α) over

K, and hence [K(α) : K] = degmα(K).

Proof. The evaluation map Eα : K[t] → K[α] is a surjective homomorphism
with ker(Eα) = (mα(K)) a maximal ideal. Thus, on putting g = mα(K),
we see that K[t]/(g) is a field. Next, define ψ : K[t]/(g) → K[α] by putting
ψ(f +(g)) = Eα(f). We find that ψ is an isomorphism from the field K[t]/(g)
onto K[α], whence K[α] is a field, and K[α] = K(α). This confirms (i).

We next establish the assertion (ii). When f ∈ K[t], there exist q, r ∈ K[t]
with f = gq + r with deg r < deg g. Then f + (g) = r + (g). Thus, for
any β ∈ K[α] = K(α), there exists r ∈ K[t] with deg r < deg g such that
Eα(r + gq) = β. In particular, the set {1, α, α2, . . . , αn−1} spans the field
K(α). This set is linearly independent over K, for otherwise α would be a
root of some nonzero polynomial h ∈ K[t] with deg h < degmα(K). Thus
{1, α, α2, . . . , αn−1} is indeed a basis for K(α) over K, and the remaining
assertions of (ii) are immediate. □
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Of course, part (ii) of this theorem ensures that whenever L : K is a field
extension, and α ∈ L is algebraic over K with degmα(K) = n, then

K(α) = K[α] = {c0 + c1α + . . .+ cn−1α
n−1 : c0, . . . , cn−1 ∈ K}.

We finish this subsection by recording some basic consequences of these ideas.

Proposition 1.12. Let L : K be a field extension with K ⊆ L, and suppose
that α ∈ L. Then α is algebraic over K if and only if [K(α) : K] <∞.

Proof. Check this as an exercise for yourself. □

Proposition 1.13. Suppose that L : K is a field extension with K ⊆ L, and
α ∈ L is algebraic over K. Then every element of K(α) is algebraic over K.

Proof. Since α is algebraic over K, we have [K(α) : K] < ∞. But whenever
β ∈ K(α), we have K(β) ⊆ K(α), and hence it follows from the Tower Law
that [K(α) : K(β)][K(β) : K] = [K(α) : K] < ∞, so that [K(β) : K] < ∞.
Then β is algebraic over K. □

Theorem 1.14. Let L : K be a field extension with K ⊆ L. Then the following
are equivalent:

(i) one has [L : K] <∞;
(ii) the extension L : K is algebraic, and there exist α1, . . . , αn ∈ L having

the property that L = K(α1, . . . , αn).

Proof. This follows by a straightforward induction, using the Tower Law. □

Proposition 1.15. Let L : K be a field extension, and define

Lalg = {α ∈ L : α is algebraic over K}.
Then Lalg is a subfield of L.

Proof. Suppose that α, β ∈ Lalg\{0}. An application of the tower law confirms
that [K(α, β) : K] < ∞, whence [K(αβ) : K] < ∞ and [K(α + β) : K] < ∞,
so that both αβ and α+β lie in Lalg. The other field axioms are easily checked
once one observes that whenever α ∈ Lalg \ {0}, then the definition of K(α)
implies that α−1 ∈ K(α), so that [K(α−1) : K] ≤ [K(α) : K] < ∞, and thus
α−1 ∈ Lalg. □

1.3. Review of finite fields and tests for irreducibility. We finish this
section by recalling for future use some basic material on finite fields and tests
for irreducibility, all from basic algebra courses.

Definition 8. Let K be a field with additive identity 0K and multiplicative
identity 1K. When n ∈ N, we write n ·1K to denote 1K+ . . .+1K (as an n-fold
sum). We define the characteristic of K, denoted by ch(K), to be the smallest
positive integer m with the property that m · 1K = 0K; if no such integer m
exists, we define the characteristic of K to be 0.

Proposition 1.16. Let K be a field with ch(K) > 0. Then ch(K) is equal to
a prime number p, and then for all x ∈ K one has p · x = 0.
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Proof. Let n = ch(K). Since 1K ̸= 0K , we cannot have n = 1. Suppose then
that n = km for some k,m ∈ N. Then one has 0K = n · 1K = (k · 1K)(m · 1K).
Since k · 1K ∈ K and m · 1K ∈ K, and K is an integral domain, it follows that
k · 1K = 0K or m · 1K = 0K . But n = ch(K) is the smallest positive integer
having the property that n ·1K = 0K , and hence one of k and m must be equal
to n. We therefore infer that n must be prime. When n is the prime p, it
follows that for all x ∈ K, one has

p · x = x+ · · ·+ x = 1Kx+ · · ·+ 1Kx

as p-fold sums, and hence p · x = (p · 1K)x = 0Kx = 0K . □

Theorem 1.17. Suppose that ch(K) = p > 0, and put F = {c · 1K : c ∈ Z}.
Then F is a subfield (called the prime subfield) of K, and F ≃ Z/pZ.

Proof. Define η : Z → K by η(c) = c · 1K . Then F = η(Z), and one readily
confirms that η is a ring homomorphism. Since pZ ⊆ ker(η), one sees that
ker(η) is equal to either pZ or Z, for these are the only ideals of Z containing pZ.
Since η(1) = 1K ̸= 0K , the only possibility is that ker(η) = pZ. We therefore
deduce via the Fundamental Homomorphism Theorem that F ≃ Z/pZ. □

The proof of the next theorem relies on results from group theory.

Theorem 1.18. Let K be a field, and denote by K× the abelian multiplicative
group K \ {0}. Then every finite subgroup G of K× is cyclic. In particular, if
K is a finite field then K× is cyclic.

Proof. Let n = |G|. Since G is abelian, there is some element x ∈ G having the
property that for all y ∈ G, we have ord(y)| ord(x). Let k = ord(x). Then it
follows from Lagrange’s Theorem that k|n, whence in particular k ≤ n. Also,
for all y ∈ G, we have ord(y)|k, and thus y is a root of the polynomial tk − 1.
But G ⊂ K and K[t] is a UFD, so that tk − 1 can have at most k roots in
K. However, we have shown that every element of G is a root of tk − 1, and
G has n elements, and so we must have n ≤ k. We have therefore shown that
k ≤ n ≤ k, whence k = n. The element x ∈ G therefore has order n = |G|,
which means that

〈
x
〉
is a cyclic subgroup of G with order n = |G|, which is

to say that
〈
x
〉
= G. □

Finally, we recall some methods for testing polynomials for irreducibility.

Definition 9. Let R be a UFD. When a0, . . . , an ∈ R are not all 0, we define
as a highest common factor of a0, . . . , an (written hcf(a0, . . . , an)) any element
c ∈ R satisfying

(i) c|ai (0 ≤ i ≤ n), and
(ii) whenever d|ai (0 ≤ i ≤ n), then d|c.

When f = a0 + a1X + . . .+ anX
n is a non-zero polynomial in R[X], we define

a content of f to be any hcf(a0, . . . , an). We say that f ∈ R[X] is primitive if
f ̸= 0 and the content of f is divisible only by units of R.



GALOIS THEORY 13

Theorem 1.19 (Gauss’ Lemma). Suppose that R is a UFD with field of frac-
tions Q. Suppose that f is a primitive element of R[X] with deg f > 0. Then
f is irreducible in R[X] if and only if f is irreducible in Q[X].

Theorem 1.20 (Eisenstein’s Criterion). Suppose that R is a UFD, and that
f = a0 + a1X + . . . + anX

n ∈ R[X] is primitive. Then provided that there is
an irreducible element p of R having the property that

(i) p|ai for 0 ≤ i < n,
(ii) p2 ∤ a0, and
(iii) p ∤ an,

then f is irreducible in R[X], and hence also in Q[X], where Q is the field of
fractions of R.

Theorem 1.21 (Localisation principle). Let R be an integral domain, and let
I be a prime ideal of R. Define φ : R[X] → (R/I)[X] by putting

φ(a0 + a1X + . . .+ anX
n) = a0 + a1X + · · ·+ anX

n,

where aj = aj + I. Then φ is a surjective homomorphism. Moreover, if
f ∈ R[X] is primitive with leading coefficient not in I, then f is irreducible in
R[X] whenever φ(f) is irreducible in (R/I)[X].

2. Ruler and compass constructions: an enhanced review

2.1. Constructible points and constructible real numbers. The topic
of constructions by ruler and compass is quite classical, and familiar to most
of us from our early days in mathematics classes. Here and throughout we use
ruler to mean a straight-edge only, which is to say that no measurements are
allowed! Here we review basic constructions, and relate “constructible” points
to the degree of a corresponding field extension of Q.

Definition 10. A point P ∈ R2 is constructible by ruler and compass if there
exists a finite sequence (P0, P1, . . . , Pn), with Pj ∈ R2 (0 ≤ j ≤ n), satisfying
the following properties:

(a) One has P0 = (0, 0), P1 = (1, 0) and Pn = P ;
(b) For 1 ≤ j ≤ n, let Sj = {P0, . . . , Pj}. Then for each j with 2 ≤ j ≤ n,

the point Pj is one of the following:
(i) the intersection of two distinct straight lines, each joining two

points of Sj−1;
(ii) a point of intersection of a straight line joining two points of Sj−1

and a circle with centre a point of Sj−1 and radius the distance
between two points of Sj−1;

(iii) a point of intersection of two distinct circles, each with centre a
point of Sj−1 and radius the distance between two points of Sj−1.

It is convenient to label the point (0, 0) as O and (1, 0) as X. We refer to
points as being constructible as shorthand for constructible by ruler and com-
pass, taking it as read that we are limited to ruler and compass constructions.
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Definition 11. One has the following notions of constructible real numbers
and constructible angles:

(i) A real number a is constructible if it is possible, using ruler and compass
only, to construct a line segment of length |a| in the plane R2, starting
from the initial points O and X.

(ii) An angle θ is constructible from an angle ϕ if, given points O, A and B
in R2 having the property that the angle ∠AOB is ϕ, there is a point
C ∈ R2 constructible by ruler and compass having the property that
the angle ∠AOC is θ.

Two problems open from classical times until the nineteenth century were:

(a) Is it possible to duplicate the cube?
(b) Is it possible to trisect any given angle?

In other words, (a) is 3
√
2 constructible? and (b) given an arbitrary angle

θ, can one construct θ/3? Both questions were answered, in the negative, by
Pierre Laurent Wantzel in 1837.

We take for granted that the reader can perform the following constructions:

(1) Bisect a given line segment;
(2) Bisect a given angle;
(3) Construct a line perpendicular to a given line or line segment;
(4) Construct a line parallel to a given line or line segment;
(5) Using a given line segment to define 1 unit of length, we can measure

1 unit in length on another given line or line segment.

It is an easy exercise to show that Z consists of constructible numbers. Also,
it is possible to construct sums, products, quotients and square-roots.

Proposition 2.1. Let a, b ∈ R be nonzero constructible numbers with a > 0.
Then the numbers a+ b, ab, a/b and

√
a are also constructible.

Proof. It is an easy exercise to show that a + b is constructible. We next
consider the construction of ab and a/b are constructible, noting that it suffices
to consider the situation with b > 0.

We refer to Fig. 1. Since a is constructible, we may consider a line segment
OA of length a. Fix a point Q not on the line through O and A. Since b
is constructible, we may fix points U and B on the line through O and Q
in such a manner that the length of the segment OU is 1, and the length of
the segment OB is b. Now construct the line L through B that is parallel to
the line through A and U , and let D be the point where L intersects the line
through O and A. Let x denote the distance from O to D, and note that x
is constructible. Since the triangles △OAU and △ODB are similar, we have
that a/x = 1/b. Hence x = ab, and hence ab is constructible.

Now let L′ be the line through U that is parallel to the line through A and
B, and let D′ be the point where L′ intersects the line through O and A, and
let x′ denote the distance from O to D′. Note that x′ is constructible. Thus
△OAB and △OD′U are similar triangles, so that x′/a = 1/b. We conclude
that x′ = a/b and thus a/b is constructible.
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Fig. 1. Construction of ab and a/b from a and b.

Fig. 2. Construction of
√
a from a.

□

We now consider the construction of
√
a, and refer to Fig. 2. Since a is

constructible, we can construct the point A lying on the line through O and X
having the property that the distance from X to A is a. Since we can bisect
line segments, we can construct a circle of diameter a+ 1 whose center is the
midpoint of the line segment between O and A. Let L be the line passing
through X that is perpendicular to the line through O and X. Let B be a
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point where L intersects the circle, and let x denote the distance from X to B.
Note that x is constructible. Since the triangle △OBA is inscribed in a circle
with one side on a diameter of the circle, we know that the angle ∠OBA is
a right angle. Since △OBA and △OXB are right triangles sharing the angle
∠BOX, these triangles are similar. Hence ∠OAB is equal to ∠OBX. Also,
∠OAB is the same as ∠XAB, so the right triangles △XAB and △XBO are
similar. Hence 1/x = x/a, and from this we deduce that x2 = a. We therefore
conclude that

√
a = x is constructible.

2.2. Conditions for constructibility, and the classical problems. The
following gives a necessary condition for a point to be constructible.

Theorem 2.2. Let P = (a, b) be a constructible point in the plane R2. Then
there exists a non-negative integer t with [Q(a, b) : Q] = 2t.

Proof. Since P is constructible, there is a sequence of points (P0, . . . , Pn) sat-
isfying the conditions of Definition 10. Let Pj = (aj, bj) (0 ≤ j ≤ n). We put
K1 = Q, and for 2 ≤ j ≤ n set

Kj = Kj−1(aj, bj) = Q(a1, b1, . . . , aj, bj).

By the tower law, we have

[Kn : Q] = [Kn : Kn−1][Kn−1 : Kn−2] · · · [K2 : K1].

Since (a, b) = (an, bn) and

[Kn : Q] = [Kn : Q(a, b)][Q(a, b) : Q],

we find that [Q(a, b) : Q] divides [Kn : Q]. Consequently, if [Kn : Q] is a power
of 2, then so is [Q(a, b) : Q]. Thus, in order to prove the theorem, it suffices
to confirm that for each index j, we have [Kj+1 : Kj] ∈ {1, 2}.
We divide the proof that [Kj+1 : Kj] ∈ {1, 2} (2 ≤ j ≤ n) into three cases,

according to the type of construction employed in Definition 10(b).

Case (i). Suppose that (aj+1, bj+1) is the intersection of two distinct straight
lines, each joining two points of Sj. Then there are four points, namely (ak, bk)
distinct from (am, bm), and (an, bn) distinct from (ar, br), lying in Sj, and having
the property that (aj+1, bj+1) is the unique point of intersection of the line
through (ak, bk) and (am, bm), and that through (an, bn) and (ar, br). Thus
(aj+1, bj+1) is a common zero of the polynomials

(X − ak)(bm − bk)− (Y − bk)(am − ak) ∈ Kj[X, Y ]

and
(X − an)(br − bn)− (Y − bn)(ar − an) ∈ Kj[X, Y ].

The distinctness of the two lines ensures that the simultaneous linear equa-
tions defined by the vanishing of these two polynomials have a unique solution
(aj+1, bj+1) ∈ K2

j , and so [Kj+1 : Kj] = 1.

Case (ii). Suppose that (aj+1, bj+1) is a point of intersection of a line and a
circle constructed using Kj. In this case there are five points, namely (ak, bk)
distinct from (am, bm), (an, bn), and (ar, br) distinct from (as, bs), lying in Sj,
and having the property that (aj+1, bj+1) is one of the points of intersection of
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the line through (ak, bk) and (am, bm), and the circle with centre (an, bn) and
radius equal to the distance between (ar, br) and (as, bs). Hence (aj+1, bj+1) is
a common zero of the polynomials

(X − ak)(bm − bk)− (Y − bk)(am − ak) ∈ Kj[X, Y ]

and

(X − an)
2 + (Y − bn)

2 − (ar − as)
2 − (br − bs)

2 ∈ Kj[X, Y ].

Thus (aj+1, bj+1) is a simultaneous zero of two polynomials of the shape

uX + vY + w ∈ Kj[X, Y ]

X2 + Y 2 + u′X + v′Y + w′ ∈ Kj[X, Y ].

By reversing the roles of X and Y , if necessary, there is no loss in supposing
that u ̸= 0. Then by solving uX + vY + w = 0 for X and substituting
into the second polynomial, we obtain a quadratic polynomial f ∈ Kj[Y ]. If
f has a root α ∈ Kj, then one finds that there are elements c, β ∈ Kj for
which f = c(Y − α)(Y − β). Thus bj+1 ∈ {α, β}, whence bj+1 ∈ Kj. From
here, we may solve for X = aj+1 from the linear equation uX + vY + w = 0,
whence aj+1 ∈ Kj. Meanwhile, if f does not have a root in Kj, one sees
that, since deg f = 2, the polynomial f must be irreducible over Kj. In
such circumstances, since bj+1 is a root of f , it follows that [Kj(bj+1) : K] =
deg f = 2. Solving as before for aj+1, we find that aj+1 ∈ Kj(bj+1), whence
Kj+1 = Kj(aj+1, bj+1) = Kj(bj+1) and hence [Kj+1 : Kj] = 2.

Case (iii). Suppose that (aj+1, bj+1) is a point of intersection of two dis-
tinct circles constructed using Kj. In this case, the point (aj+1, bj+1) is a
simultaneous zero of two polynomials

X2 + Y 2 + uX + vY + w ∈ Kj[X, Y ]

X2 + Y 2 + u′X + v′Y + w′ ∈ Kj[X, Y ].

By subtracting these polynomials, we discern that (aj+1, bj+1) is a zero of the
linear polynomial

(u− u′)X + (v − v′)Y + (w − w′) ∈ Kj[X, Y ].

We cannot have u = u′ and v = v′, for then the circles would be concentric
and thus would either be equal, or else have no point of intersection. A com-
parsion of this situation with that concluding the argument of the previous
case therefore reveals that the same argument may be applied, and again one
has [Kj+1 : Kj] = 2.

We therefore conclude that in all cases, one has [Kj+1 : Kj] ∈ {1, 2}, so as
discussed at the beginning of the proof, the theorem now follows. □

Corollary 2.3. Suppose that a ∈ R is constructible. Then there exists a non-
negative integer t with [Q(a) : Q] = 2t.

Proof. If a ∈ R is constructible, then it is possible to construct the point
(a, 0) ∈ R2, and hence the desired conclusion follows from Theorem 2.2. □
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Theorem 2.4. The cube cannot be duplicated by any ruler and compass con-
struction.

Proof. We seek to show that 3
√
2 is not constructible. The minimal polynomial

of 3
√
2 over Q certainly divides t3−2. However, as a consequence of Eisenstein’s

criterion using the prime 2, one finds that t3 − 2 is irreducible over Q. Hence
[Q( 3

√
2) : Q] = deg(t3 − 2) = 3. Since 3 is not a power of 2, it follows from

Theorem 2.3 that 3
√
2 is not constructible. □

Using ruler and compass, we can construct an angle of π/3 radians as follows.
Take A to be the midpoint of the line segment joining O and X. The distance
from O to A is 1/2. Construct a line L through A so that L is perpendicular
to the line through O and X. Since the real number

√
3/2 is constructible, we

may construct a point B on L of distance
√
3/2 from A. Then one finds that

the angle ∠AOB is π/3 radians.

Theorem 2.5. An angle of π/3 radians cannot be trisected using ruler and
compass constructions.

Proof. Let A and B be the points described in the discussion in the preamble
to the statement of the theorem. Thus ∠AOB is an angle of π/3 radians. For
the sake of contradiction, suppose that we can in fact trisect angle ∠AOB. Let
α = π/9, and let C be a point on the circle with centre O and radius 1 having
the property that ∠AOC = α. Let L′ be the line through O and C. Then the
point (cosα, sinα) lies on the line L′ and is distance 1 from O. We thus see
that the point (cosα, sinα) is constructible, and hence, as a consequence of
Theorem 2.2, the real numbers cosα and sinα both lie in some field K having
the property that for some non-negative integer r, one has [K : Q] = 2r. From
here, an application of the tower law reveals that

2r = [K : Q(cosα)][Q(cosα) : Q],

whence for some non-negative integer t with t ≤ r, one has

[Q(cosα) : Q] = 2t. (2)

We obtain a contradiction to this last assertion by applying a crafty trigono-
metric identity. Recall that for all θ ∈ R, one has cos(3θ) = 4(cos θ)3− 3 cos θ.
Since cos(π/3) = 1/2, it follows that

4(cosα)3 − 3 cosα− 1
2
= 0.

Putting σ = 2 cosα, we see that σ3 − 3σ − 1 = 0. If the polynomial f(t) =
t3−3t−1 were to be reducible, then it follows from Gauss’ lemma that it would
factor as a product of monic polynomials in Z[t], one at least of which would
be linear with constant term dividing 1. But neither 1 nor −1 are roots of f ,
and hence f is irreducible over Q. Thus we conclude that f is the minimal
polynomial of σ over Q, and hence that [Q(σ) : Q] = deg f = 3. However, it
follows from (2) that [Q(σ) : Q] = [Q(cosα) : Q] = 2t, for some non-negative
integer t. Then 3 = 2t, which delivers a contradiction. We are thus forced to
conclude that the angle π/9 is in fact not constructible.
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□

As a final remark for this subsection, we note that if we can construct
cos(2π/n) for n ∈ N, then we can construct a regular n-gon. To confirm this,
construct the circle of radius 1 and centre O. With α = 2π/n, let A the the
point of distance cosα from O on the ray from O passing through X. Let L
be the line through A perpendicular to the line through O and X, and let B1

be a point where L intersects the circle. Then the arc on the circle between X
and B has length α. Hence one can construct points B2, . . . , Bn−1 on the circle
to partition the circle into arcs of length α. Constructing the line segments
joining X to B1, also Bn−1 to X, and Bj to Bj+1 for 1 ≤ j < n − 1 yields a
regular n-gon inscribed in the circle.

There are more results on possible/impossible contructions that are proved
using results on “normal extensions” and “Galois extensions”; the interested
reader can find an account of some such results in, for instance, the section
Geometric Constructions in Grillet’s book “Algebra”.

2.3. A bit of non-examinable fun: cord and nail constructions. The
classical ruler and compass construction can be generalised in various ways.
An appealing and (as far as we are aware) currently unexplored generalisation
would have been immediately accessible to classical scholars. This is motivated
by the observation that, given 3 points A, B and C in a triangular configuration
in the plane, one can construct an ellipse by tightly wrapping a cord around
nails inserted at all three points, forming a closed triangular loop around them.
One now removes this cord from nail C, inserting a pen in its place, and one
traces out the curve permitted by moving the pen within the (fixed length)
cord, kept taut. In this way, as every student knows, the curve traced out is
an ellipse with foci at A and B, passing through the point C.

When A = (a, b) and B = (c, d) lie in R2, we define the distance d(A,B)
between A and B via the relation

d(A,B) =
√

(a− c)2 + (b− d)2.

Definition 12. Given two points A and B in R2, and a real number r with
r > 0, we define the ellipse E(A,B, r) to be the locus of points Z ∈ R2 having
the property that

d(Z,A) + d(A,B) + d(B,Z) = r.

Notice that we permit the possibility that A = B, in which case the ellipse
in question becomes a circle. This definition captures precisely the familiar
picture described in the opening paragraph of this subsection.

Definition 13. A point P ∈ R2 is simply constructible by cord and nail if there
exists a finite sequence (P0, P1, . . . , Pn), with Pj ∈ R2 (0 ≤ j ≤ n), satisfying
the following properties:

(a) One has P0 = (0, 0), P1 = (1, 0) and Pn = P ;
(b) For 1 ≤ j ≤ n, let Sj = {P0, . . . , Pj}. Then for each j with 2 ≤ j ≤ n,

the point Pj is one of the following:
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(i) the intersection of two distinct straight lines, each joining two
points of Sj−1;

(ii) a point of intersection of a straight line joining two points of Sj−1

and an ellipse E(Pl, Pm, r), for some Pl, Pm ∈ Sj−1, in which r is
the distance between two points of Sj−1;

(iii) a point of intersection of two distinct ellipses E(Pli , Pmi
, ri), with

Pli , Pmi
∈ Sj−1 and ri the distance between two points of Sj−1, for

i = 1 and 2.

It follows from this definition that points constructible by ruler and com-
pass are contained within the set of points simply constructible by cord and
nail. However, since two ellipses may intersect in 4 points, with coordinates
satisfying a quartic polynomial defined over the base field, the set of points
simply constructible by cord and nail is readily seen to be strictly larger than
the set of points constructible by ruler and compass.

Exercise 3. Let P = (a, b) be a point in the plane R2 simply constructible
by cord and nail. Show that there exist non-negative integers r and s for
which [Q(a, b) : Q] = 2r3s. Hence deduce that the point ( 5

√
2, 0) is not simply

constructible by cord and nail.

More elaborate constructions are feasible within this arena.

Definition 14. Let n be a natural number, and let i = (i1, . . . , im) be an
m-tuple of integers with 0 ≤ i1 < i2 < . . . < im ≤ n. Given a finite sequence
of points Π = (P0, P1, . . . , Pn), with Pj ∈ R2 for each j, and a point Z ∈ R2,
we define Πi(Z) to be the (n+ 1)-tuple (Q0, Q1, . . . , Qn), in which

Qi =

{
Pi, when i ̸∈ {i1, . . . , im},
Z, when i ∈ {i1, . . . , im}.

In such circumstances, given a real number r with r > 0, we define the planar
curve Ci(Π, r) to be the locus of points Z ∈ R2 having the property that

d(Qn, Q0) +
n−1∑
j=0

d(Qj, Qj+1) = r.

Here, we again allow repetitions amongst P0, . . . , Pn. This definition cap-
tures the notion of wrapping a cord (possibly with repeated loops) around a
collection of points, and tying off the cord in a manner analogous to that in
our initial discussion.

Definition 15. A point P ∈ R2 is constructible by cord and nail if there exists
a finite sequence (P0, P1, . . . , Pn), with Pj ∈ R2 (0 ≤ j ≤ n), satisfying the
following properties:

(a) One has P0 = (0, 0), P1 = (1, 0) and Pn = P ;
(b) For 1 ≤ j ≤ n, let Sj = {P0, . . . , Pj}. Then for each j with 2 ≤ j ≤ n,

the point Pj is one of the following:
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(i) the intersection of two distinct straight lines, each joining two
points of Sj−1;

(ii) a point of intersection of a straight line joining two points of Sj−1

and a curve Ci(Π, r), for some sequence Π = (Pj0 , . . . , Pjs) and
a non-empty proper subset {i1, . . . , im} of {j0, . . . , js}, in which
Pjm ∈ Sj−1 (0 ≤ m ≤ s), and r is the distance between two points
of Sj−1;

(iii) a point of intersection of two distinct curves Cil(Πl, rl) (l = 1, 2)
of the type described in (ii).

The curves C(Π, r) now available to us become increasingly complicated as
the number of points increases. The task of proving non-constructibility by
cord and nail in this more general sense remains open in almost all of the
classical problems. However, since π = 3.14159 . . . is known to be transcen-
dental over Q, it does at least follow that the circle cannot be squared by cord
and nail construction (explain this to yourself). Enthusiastic students may
entertain themselves by trying to trisect the angle, or duplicate the cube, by
cord and nail constructions – with potentially publishable outcomes! (For an
account of angle trisections and duplication of 2 using ellipses, see A. Gibbins
and L. Smolinsky, Geometric constructions with ellipses, Math. Intelligencer
31 (2009), no. 1, 57–62).

3. Extending field homomorphisms and the Galois group of an
extension

As we have noted earlier, one of the principal motivations for the develop-
ment of Galois Theory is to understand the extent to which different roots of a
given polynomial are indistinguishable, or can be distinguished. One plausible
approach to investigating this problem is to investigate field extensions associ-
ated with different roots of the same polynomial. This requires us to establish
a framework in which such problems may be rigorously considered.

Definition 16. For i = 1 and 2, let Li : Ki be a field extension relative to
the embedding φi : Ki → Li. Suppose that σ : K1 → K2 and τ : L1 → L2 are
isomorphisms. We say that τ extends σ if τ◦φ1 = φ2◦σ. In such circumstances,
we say that L1 : K1 and L2 : K2 are isomorphic field extensions.

This definition can be extended. When σ : K1 → K2 and τ : L1 → L2

are homomorphisms (instead of isomorphisms), then τ extends σ as a homo-
morphism of fields when the isomorphism τ : L1 → L′

1 = τ(L1) extends the
isomorphism σ : K1 → K ′

1 = σ(K1).

The final condition in Definition 16 is required to ensure that the following
diagram commutes, so that we obtain a consistent mapping (indicated by the
dashed diagonal mapping) from K1 into L2, no matter whether we first map
into L1, or instead first map into K2.
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L1 L2

K1 K2

τ

σ

ϕ1 ϕ2

Suppose that Ki ⊆ Li (i = 1, 2), and write in the usual notation τ |K1 for
the mapping τ restricted to K1. Thus, when k ∈ K1, we have τ |K1(k) = τ(k),
where on the right hand side we view k as an element of L1. As is apparent
from the above commutative diagram, if τ extends σ, then τ |K1 = σ.

Definition 17. Let L : K be a field extension relative to the embedding
φ : K → L, and let M be a subfield of L containing φ(K). Then, when
σ : M → L is a homomorphism, we say that σ is a K-homomorphism if σ
leaves φ(K) pointwise fixed, which is to say that for all α ∈ φ(K), one has
σ(α) = α.

K φ(K) L

M

φ ι

ι
σ

It transpires that K-homomorphisms preserve the property of being a root
of a given polynomial defined over K.

Proposition 3.1. Suppose that L : K is a field extension with K ⊆ L, and
that τ : L→ L is a K-homomorphism. Suppose that f ∈ K[t] has the property
that deg f ≥ 1, and additionally that α ∈ L. Then

(i) if f(α) = 0, one has f(τ(α)) = 0;
(ii) when τ is a K-automorphism of L, one has that f(α) = 0 if and only

if f(τ(α)) = 0.

Proof. This is problem 4 from Problem Sheet 4. □

We now come to an important result showing that isomorphisms of fields
can be extended to corresponding field extensions in such a manner that in-
formation concerning roots of polynomials defined over the respective ground
fields is preserved.

Theorem 3.2. Let σ : K1 → K2 be a field isomorphism. Suppose that Li
is a field with Ki ⊆ Li (i = 1, 2). Suppose also that α ∈ L1 is algebraic
over K1, and β ∈ L2 is algebraic over K2. Then we can extend σ to an
isomorphism τ : K1(α) → K2(β) in such a manner that τ(α) = β if and only
if mβ(K2) = σ(mα(K1)).

K2 K2(β) L2

K1 K1(α) L1

φ2 ι2

σ

φ1

τ

ι1



GALOIS THEORY 23

Note: When τ : K1(α) → K2(β) is a homomorphism, and τ extends the
homomorphism σ : K1 → K2, then τ is completely determined by σ and the
value of τ(α).

Proof. Suppose first that we have an isomorphism τ : K1(α) → K2(β) having
the property that τ extends σ and τ(α) = β. Letmα(K1) = c0+c1t+· · ·+cdtd,
so that c1, . . . , cd ∈ K1 and cd = 1. Then

0 = τ(c0 + c1α + · · ·+ cdα
d)

= τ(c0) + τ(c1)τ(α) + · · ·+ τ(cd)τ(α)
d

= σ(c0) + σ(c1)β + · · ·+ σ(cd)β
d.

Hence β is a root of σ(mα(K1)). Since mα(K1) is monic and irreducible over
K1, it follows that σ(mα(K1)) is monic and irreducible over K2 (recall that
σ : K1[t] → K2[t] is an isomorphism). Hence σ(mα(K1)) = mβ(K2).

Now suppose that β is a root of σ(mα(K1)). As a notational convenience,
we write f1 = mα(K1) and f2 = σ(mα(K1)). Then f2 is monic and irreducible
over K2. The map ψ1 : K1[t]/(f1) → K1(α) given by ψ1(g+ (f1)) = g(α) is an
isomorphism. Similarly, we have that the map ψ2 : K2[t]/(f2) → K2(β) given
by ψ2(h + (f2)) = h(β) is also an isomorphism. Define φ : K2[t] → K2[t]/(f2)
by putting φ(h) = h + (f2). Then it is easy to see that φ is a surjective
homomorphism. Thus φ◦σ : K1[t] → K2[t]/(f2) is a surjective homomorphism.
Moreover, one has

ker(φ ◦ σ) = {g ∈ K1[t] : σ(g) + (f2) = 0 + (f2)}
= {g ∈ K1[t] : σ(g) ∈ (f2)}
= {g ∈ K1[t] : σ(g) = f2h2 for some h2 ∈ K2[t]}
= {σ−1(f2h2) : h2 ∈ K2[t]}.

But σ(f1) = f2 and σ(K1[t]) = K2[t], and so ker(φ ◦ σ) = f1K1[t] = (f1).
Thus, it follows by applying the Fundamental Homomorphism Theorem that
the map ω : K1[t]/(f1) → K2[t]/(f2), defined by ω(g + (f1)) = σ(g) + (f2), is
an isomorphism. We have therefore established that with τ = ψ2 ◦ω ◦ψ−1

1 , the
map τ : K1(α) → K2(β) is an isomorphism.

K2 K2[t] K2[t]/(f2) K2(β) L2

K1 K1[t] K1[t]/(f1) K1(α) L1

ϕ ψ2 ι2

σ σ ω

ψ1

τ

ι1

Finally, we have

τ(α) = ψ2 ◦ ω ◦ ψ−1
1 (α) = ψ2 ◦ ω(t+ (f1))

= ψ2(σ(t) + (f2)) = ψ2(t+ (f2)) = β,

and when c ∈ K1, we have

τ(c) = ψ2 ◦ ω ◦ ψ−1
1 (c) = ψ2 ◦ ω(c+ (f1)) = ψ2(σ(c) + (f2)) = σ(c).
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Thus τ extends σ, and τ(α) = β.

This completes the proof of the theorem. □

Corollary 3.3. Let L : M be a field extension with M ⊆ L. Suppose that
σ : M → L is a homomorphism, and α ∈ L is algebraic over M . Then the
number of ways we can extend σ to a homomorphism τ : M(α) → L is equal
to the number of distinct roots of σ(mα(M)) that lie in L.

Definition 18. Suppose that L : K is a field extension. With Aut(L) denoting
the automorphism group of L, we set

Gal(L : K) = {σ ∈ Aut(L) : σ is a K-homomorphism},
and we call Gal(L : K) the Galois group of L : K.

In problem 5 of Problem Set 4, you are asked to show that Gal(L : K) is
a subgroup of Aut(L). We note that authors have various, slightly different,
definitions of Gal(L : K). Some authors insist that the field extension L : K
be a splitting field extension before referring to Gal(L : K), whilst others insist
in addition that Gal(L : K) be separable, and hence Galois. We have not yet
defined these three terms. At this stage it suffices to comment that when such
conditions are met, these differing notions of Gal(L : K) all coincide. We have
chosen the most inclusive definition.

Note. Proposition 3.1 tells us that when f ∈ K[t] and σ ∈ Gal(L : K), the
mapping σ permutes the roots of f that lie in L.

Theorem 3.4. Suppose that L : K is an algebraic extension, and σ : L → L
is a K-homomorphism. Then σ is an automorphism of L.

Proof. For simplicity, suppose first that K ⊆ L. Take α ∈ L, and let

R = {β ∈ L : β is a root of mα(K)}.
Then we may factor mα(K) over L in the shape

mα(K) = g ·
∏
β∈R

(t− β)rβ ,

where the exponents rβ are positive integers, and g ∈ L[t] has no roots in L.
Note in particular that α ∈ R. Since σ fixes K pointwise, we have

mα(K) = σ(mα(K)) = σ(g) ·
∏
β∈R

(t− σ(β))rβ .

But L[t] is a UFD, so for some β, γ ∈ R we have σ(α) = β and σ(γ) = α
(and, incidentally, also rβ = rα = rγ). This holds for all α ∈ L, so we have
σ(L) ⊆ L ⊆ σ(L), whence σ(L) = L. We therefore conclude that σ ∈ Aut(L).

If L : K is an extension relative to the embedding φ : K → L, and φ is not
the identity map, then we replace K by φ(K) in the above argument. □

The next result gives a bound on the size of the Galois group of an extension.

Theorem 3.5. If L : K is a finite extension, then |Gal(L : K)| ≤ [L : K].
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Proof. Suppose first that K ⊆ L. In such circumstances, there exist elements
α1, . . . , αn ∈ L, all algebraic over K, for which L = K(α1, . . . , αn). Let K0 =
K ′

0 = K, and for 1 ≤ i ≤ n, let Ki = Ki−1(αi). We define σ0 : K0 → K ′
0

to be the identity map. We now proceed inductively, constructing elements of
Gal(L : K) as follows.

We suppose that σi−1 : Ki−1 → K ′
i−1 has already been defined, and is

an isomorphism with K ′
i−1 a subfield of L. Let gi = mαi

(Ki−1), and let
g′i = σi−1(gi). Thus g′i is monic and irreducible. We can extend σi−1 to an
isomorphism σi : Ki → K ′

i for some subfield K ′
i of L if and only if g′i has a

root in L. We note in this context that g′i has at most deg g′i roots in L, and
deg g′i = deg gi = [Ki : Ki−1]. It follows that there are at most [Ki : Ki−1]
ways to extend σi−1 to σi.

Suppose we can extend σi−1 to σi for 1 ≤ i ≤ n. Then we have a K-
homomorphism σn : Kn → L. Since Kn = L and σn is a K-homomorphism
from L into L, and moreover L : K is an algebraic extension, the previous
theorem tells us that σ ∈ Aut(L). Thus σn ∈ Gal(L : K).

K ′
0 K ′

1 · · · K ′
i−1 K ′

i . . . K ′
n

K0 K1 · · · Ki−1 Ki . . . Kn

ψ1 ψ2 ψi−1 ψi ψi+1 ψn

φ1

σ0

φ2

σ1

φi−1 φi

σi−1

φi+1

σi

φn

σn

We observe that this construction allows us to construct at most

[K1 : K0][K2 : K1] · · · [Kn : Kn−1] = [L : K]

elements of Gal(L : K).

It remains to show that every element of Gal(L : K) may be constructed in
the fashion just described. Suppose that τ ∈ Gal(L : K). Let K0 = K ′

0 = K,
and for 1 ≤ i ≤ n, set

βi = τ(αi), Ki = Ki−1(αi), K ′
i = K ′

i−1(βi),

and let σi = τ |Ki
. Thus for each i, the homomorphism σi extends σi−1, one

has σi(Ki) = K ′
i, and βi is necessarily a root of σi−1(gi) = τ(gi), where we

write gi = mαi
(Ki−1). Hence each element of Gal(L : K) can indeed be

constructed as previously described, by successively extending σi−1 to σi for
1 ≤ i ≤ n, where σ0 is the identity map on K. We may therefore conclude
that |Gal(L : K)| ≤ [L : K].

If L : K is an extension relative to the embedding φ : K → L, and φ is not
the identity map, then we replace K by φ(K) in the above argument. □

The proof of this theorem also gives us the following two corollaries.

Corollary 3.6. Suppose that L : F and L : F ′ are finite extensions with F ⊆ L
and F ′ ⊆ L, and further that ψ : F → F ′ is an isomorphism. Then there are
at most [L : F ] ways to extend ψ to a homomorphism from L into L.

Proof. This is Problem 1 from Problem Sheet 5. □
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Corollary 3.7. Let L : K be a finite extension with K ⊆ L. Suppose that
α1, . . . , αn ∈ L and put L = K(α1, . . . , αn). Let K0 = K, and for 1 ≤ i ≤ n,
let Ki = Ki−1(αi). Then every automorphism τ ∈ Gal(L : K) corresponds to
a sequence of homomorphisms σ1, . . . , σn having the property that σ0 : K → L
is the inclusion map, one has σn = τ , and for 1 ≤ i ≤ n, the map σi : Ki → L
is a homomorphism extending σi−1 : Ki−1 → L.

Example 4. Let L = Q( 3
√
2), and consider the field extension L : Q and its

associated Galois group Gal(L : Q). One can check that the minimal polyno-
mial of m 3√2(Q) of 3

√
2 over Q is t3 − 2. We have the inclusion homomorphism

ι : Q → L defined by taking ι(a) = a for each a ∈ Q. By Corollary 3.3, the
number of ways we can extend ι to a homomorphism τ : L→ L is equal to the
number of distinct roots of m 3√2(Q) that lie in L. But the latter is just 1, since

t3 − 2 has precisely one real root, namely 3
√
2, and hence possesses only one

root over L = Q( 3
√
2). Thus we see that there is precisely one Q-automorphism

of L, which must be the identity mapping. Thus |Gal(L : Q)| = 1.

Example 5. Let M = Q(ω), where ω = e2πi/5 and consider the field extension
M : Q and its associated Galois group Gal(M : Q). One can check that the
minimal polynomial mω(Q) of ω over Q is t4 + t3 + t2 + t + 1. We have the
inclusion homomorphism ι : Q →M defined by taking ι(a) = a for each a ∈ Q.
By Corollary 3.3, the number of ways we can extend ι to a homomorphism
σ : M → M is equal to the number of distinct roots of mω(Q) that lie in M .
But the latter is precisely 4, since t4+t3+t2+t+1 = (t−ω)(t−ω2)(t−ω3)(t−ω4),
and ωj ∈ Q(ω) for each j ∈ {1, 2, 3, 4}. Thus we see that there are precisely
four distinct Q-automorphisms of M , whence |Gal(M : Q)| = 4. One can
check, in fact, that these four Q-automorphisms σj : M → M are defined by
setting σj(ω) = ωj for j ∈ {1, 2, 3, 4}.

4. Algebraic closures

4.1. The definition of an algebraic closure, and Zorn’s Lemma. We
have seen, in Theorem 1.8, that whenK is a field and f ∈ K[t]\K is irreducible,
then there exists a field extension L : K, with an associated embedding φ :
K[t] → L[y], having the property that L contains a root of φ(f). By applying
this conclusion inductively to the irreducible factors of a given polynomial
g ∈ K[t] of degree n, in turn, one obtains a tower of field extensions

Kn : Kn−1 : . . . : K1 : K,

having the property that, with composition of the associated embeddings de-
noted by ψ, the polynomial ψ(g) factors as a product of linear polynomials
over Kn. In general, however, it will not be the case that every polynomial in
Kn[X] factors as a product of linear polynomials, and to engineer this property,
we may need to go through another sequence of field extensions. Plainly, it
is convenient for certain discussions to have available a field K, extending the
field K, which has the universal property that all non-constant polynomials
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over K split as a product of linear factors. In this section we put these notions
on a rigorous footing.

Definition 19. Let M be a field.

(i) We say that M is algebraically closed if every non-constant polynomial
f ∈M [t] has a root in M .

(ii) We say that M is an algebraic closure of K if M : K is an algebraic
field extension having the property that M is algebraically closed.

Thus far, we have not established that algebraically closed fields exist, and
this is a matter to which we attend shortly. However, should they exist, then
they have all of the properties that seem intuitively clear.

Lemma 4.1. Let M be a field. The following are equivalent:

(i) the field M is algebraically closed;
(ii) every non-constant polynomial f ∈ M [t] factors in M [t] as a product

of linear factors;
(iii) every irreducible polynomial in M [t] has degree 1;
(iv) the only algebraic extension of M containing M is M itself.

Proof. This is problem 2 from Problem Sheet 5. □

The construction of algebraic closures in general involves adjoining an infi-
nite number of elements to the ground field, and for such purposes we make
use of Zorn’s Lemma. Although controversial amongst some mathematicians,
the assumption of Zorn’s Lemma is equivalent to the acceptance of the Axiom
of Choice. It is worth commenting in this context that the use of algebraic
closures is in most situations a matter of convenience, and that with enough
effort one could work inside a finite framework of extensions. Happily, when
such is the case, our conclusions are independent of the Axiom of Choice.

Definition 20. Suppose that X is a nonempty, partially ordered set with ≤
denoting the partial ordering. A chain C inX is a collection of elements {ai}i∈I
of X having the property that for every i, j ∈ I, either ai ≤ aj or aj ≤ ai.

Zorn’s Lemma: Suppose that X is a nonempty, partially ordered set with
≤ the partial ordering. Suppose that every non-empty chain C in X has an
upper bound in X. Then X has at least one maximal element m, meaning
that if b ∈ X with m ≤ b, then b = m.

Note that if we have a totally ordered set, a maximal element of the set is the
same as a maximum of the set.

Proposition 4.2. Any proper ideal A of a commutative ring R is contained
in a maximal ideal.

Proof. Let S be the set of all proper ideals of R that contain A. Then ⊆ defines
a partial ordering on S. Plainly, one has A ∈ S, and so S ≠ ∅. Suppose that
C = {Ji}i∈I is a nonempty chain in S. We claim that J = ∪i∈IJi is an upper
bound for C in S. Note first that 1 ̸∈ J , since for all i ∈ I, one has 1 ̸∈ Ji.
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Thus J ̸= R. Also, when a, b ∈ J , then there exist i, j ∈ I for which a ∈ Ji
and b ∈ Jj. Without loss of generality one has Ji ⊆ Jj. Then a, b ∈ Jj, whence
a+ b ∈ Jj. It follows easily from here that J is an ideal of R, and hence J ∈ S.
Moreover, for all i ∈ I, one has Ji ⊆ J . Thus we find that J is indeed an
upper bound for C. An application of Zorn’s Lemma therefore reveals that S
contains a maximal element B. The element B is an ideal with A ⊆ B ⊊ R.
Suppose that I is an ideal having the property that B ⊊ I ⊆ R. Thus, either I
lies in S, contradicting the maximality of B in S, or else I = R. We therefore
conclude that B is a maximal ideal. □

4.2. The existence of an algebraic closure. Our first step in establishing
the existence of an algebraic closure is to demonstrate that an extension L : K
exists in which every non-constant polynomial f lying in K[t] has a root in L.

Lemma 4.3. Let K be a field. Then there exists an algebraic extension E : K,
with K ⊆ E, having the property that E contains a root of every irreducible
f ∈ K[t], and hence also every g ∈ K[t] \K.

Proof. Let {qi}i∈I be the set of all irreducible polynomials over K, where I is
an appropriate indexing set. Consider R = K[{ti}i∈I ], and let A be the ideal
of R generated by {qi(ti)}i∈I . We claim that A ̸= R. For the sake of deriving
a contradiction, suppose that A = R. We then have 1 ∈ A, and hence

1 =
∑
j∈J

ujqj(tj), (3)

for some finite set J ⊆ I and uj ∈ R (j ∈ J ). By repeated application
of Theorem 1.8, we can construct an extension F : K having the property
that, for all j ∈ J , the polynomial qj has a root αj ∈ F . We next define a
homomorphism φ : R → F by taking φ to be the identity map on K, and by
putting

φ(ti) =

{
αi, when i ∈ J ,

0, when i ∈ I \ J .

Since R is generated by {ti}i∈I over K, this uniquely determines φ. We then
deduce from (3) that

1 = φ(1) =
∑
j∈J

φ(uj)(φ(qj))(αj) =
∑
j∈J

φ(uj)qj(αj) = 0,

which yields a contradiction. This confirms that A ̸= R.

Next, let B be a maximal ideal of R having the property that A ⊆ B. Such
an ideal exists as a consequence of Zorn’s Lemma (see Proposition 4.2). We
put E = R/B. Then E : K is a field extension relative to the embedding
ψ : K → E defined by putting ψ(c) = c + B. We identify c with ψ(c). We
have yet to confirm that every irreducible polynomial in K[t] has a root over
E. Put αi = ti + B (i ∈ I), and define σ : R → E by taking σ(u) = u + B.
Then σ is a surjective homomorphism, and σ(ti) = αi (i ∈ I). Hence for all
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i ∈ I, one has

ψ(qi)(αi) = σ(qi(ti)) = qi(ti) +B = 0 +B,

since qi(ti) ∈ A ⊆ B. Therefore every irreducible polynomial qi has a root in
E. Also, since each αi is algebraic over K, we see that E = ψ(K)[{αi}i∈I ] is
an algebraic extension of K. □

We are now equipped to show that algebraic closures exist.

Theorem 4.4. Suppose that K is a field. Then there exists an algebraic ex-
tension K of K having the property that K is algebraically closed.

Proof. We inductively construct a sequence of fields

K = E0 ⊆ E1 ⊆ · · · ⊆ En−1 ⊆ En ⊆ · · · .
For each n ∈ N, we apply Lemma 4.3 to define an algebraic extension En of
En−1 containing a root of every polynomial f ∈ En−1[t] \En−1. It follows that
each field En defined in this way is algebraic over K, and hence K = ∪n∈NEn
is algebraic over K. Suppose that f ∈ K[t] \ K. Since f has finitely many
non-zero coefficients, we see that f ∈ En−1[t] for some n ∈ N. Therefore f has
a root in En ⊆ K. Thus K is algebraically closed. □

Corollary 4.5. When K is a field, the field K is a maximal algebraic extension
of K.

4.3. Properties of algebraic closures. We now record some basic properties
of algebraic closures useful in our later deliberations.

Theorem 4.6. Let E be an algebraic extension of K with K ⊆ E, and let K
be an algebraic closure of K. Given a homomorphism φ : K → K, the map φ
can be extended to a homomorphism from E into K.

Proof. Let S be the set of all pairs (F, ψ) where F is a field with K ⊆ F ⊆ E,
and ψ : F → K is a homomorphism extending φ. Since (K,φ) ∈ S, we have
S ≠ ∅. We impose a partial ordering on S by defining (F1, ψ1) ≤ (F2, ψ2)
when F1 ⊆ F2 and ψ2 extends ψ1. Suppose that C = {(Fi, ψi)}i∈I is a non-
empty chain in S. Set F = ∪i∈IFi. Then, as is readily confirmed, one has
that F is a subfield of E. Define ψ : F → K for each α ∈ F by putting
ψ(α) = ψj(α), where j ∈ I is chosen in such a manner that α ∈ Fj. Note
that ψ is well-defined, for if i, j ∈ I with α ∈ Fi and α ∈ Fj, then either
(Fi, ψi) ≤ (Fj, ψj) and hence ψj extends ψi, or vice versa. In either case, we
have that ψi(α) = ψj(α) for α ∈ Fi∩Fj. Also, ψ is a homomorphism extending
ψi for all i ∈ I, as one can check. Hence (F, ψ) ∈ S. So every nonempty chain
C in S has an upper bound F in S. We thus deduce from Zorn’s Lemma that
S contains a maximal element (M,µ).

We now show that M = E by seeking a contradiction by supposing that
M ⊊ E. Thus, we may take α ∈ E \ M . Then α is algebraic over K,
and hence also over M . Note that since K is algebraically closed, there exists
β ∈ K having the property thatmβ(µ(M)) = µ(mα(M)). Thus we may invoke
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Theorem 3.2 to deduce that there is an extension of µ to a homomorphism
ν :M(α) → K, giving us an element (M(α), ν) ∈ S, and thereby contradicting
that (M,µ) is a maximal element of S. Then M = E, and µ : E → K is a
homomorphism extending φ. □

K

K M M(α) E

φ
µ

ν

Corollary 4.7. Suppose that K is an algebraic closure of K, and assume that
K ⊆ K. Take α ∈ K and suppose that σ : K → K is a homomorphism. Then
the number of distinct roots of mα(K) in K is equal to the number of distinct
roots of σ(mα(K)) in K.

Proof. This is problem 1 of Problem Sheet 7. □

Proposition 4.8. Suppose that L and M are fields having the property that
L is algebraically closed, and ψ : L → M is a homomorphism. Then ψ(L) is
algebraically closed.

Proof. This is problem 1 of Problem Sheet 6. □

Proposition 4.9. If L and M are both algebraic closures of K, then L ≃M .

Proof. We identify K with its isomorphic image in L, and so, without loss of
generality, we may assume that K ⊆ L. Since M : K is an extension relative
to some embedding φ : K → M , and L is an algebraic extension of K with
K ⊆ L, we can extend φ to a homomorphism ψ : L → M . Also, since L
is a field, we know that ψ must be injective. So L ≃ ψ(L), and since L is
algebraically closed, then so is ψ(L). Thus the only algebraic extension of
ψ(L) is ψ(L). ButM : ψ(L) is an algebraic extension asM : K is an algebraic
extension. We therefore conclude that M = ψ(L).

L ψ(L) M

K

ψ

φ

□

Proposition 4.10. If L : K is an algebraic extension, then L is an algebraic
closure of K, and hence L ≃ K. If in addition K ⊆ L ⊆ L, then we can take
K = L.

Proof. This is problem 2 of Problem Sheet 7. □

We now use the existence of algebraic closures to prove the following.
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Proposition 4.11. Let L : K be an extension with K ⊆ L. Suppose that
g ∈ L[t] is irreducible over L, and that g|f in L[t], where f ∈ K[t] \ {0}.
Then g divides a factor of f that is irreducible over K. Thus, there exists an
irreducible h ∈ K[t] having the property that h|f in K[t], and g|h in L[t].

Proof. We may assume that K ⊆ L ⊆ L, where L is an algebraic closure of
L. Since g is irreducible over L, we know that deg g ≥ 1. Thus, there is some
α ∈ L having the property that g(α) = 0. Over the field L, we therefore have
f(α) = 0. Then α is algebraic overK, and f is in the ideal ofK[t] generated by
h = mα(K). It follows that h is irreducible over K and h|f . Since h(α) = 0,
it follows in like manner that h is in the ideal of L[t] generated by mα(L),
whence mα(L)|h. Moreover, since g is irreducible over L with g(α) = 0, we
have g = λmα(L), where λ ∈ L× is the leading coefficient of g. Thus we
conclude that g|h, as desired. □

5. Splitting field extensions

A comparison of Examples 4 and 5 concluding §3 suggests that perhaps
Galois groups are richer in circumstances in which the underlying polynomials
split completely as a product of linear factors over the extension field. This
motivates the notion of a splitting field extension. Throughout this section,
we use K to denote a field.

Definition 21. Suppose that L : K is a field extension relative to the embed-
ding φ : K → L, and f ∈ K[t] \K.

(i) We say that f splits over L if φ(f) = λ(t − α1) · · · (t − αn), for some
λ ∈ φ(K) and α1, . . . , αn ∈ L.

(ii) Suppose that f splits over L, and letM be a field with φ(K) ⊆M ⊆ L.
We say thatM : K is a splitting field extension for f ifM is the smallest
subfield of L containing φ(K) over which f splits.

(iii) More generally, suppose that S ⊆ K[t] \K has the property that every
f ∈ S splits over L. LetM be a field with φ(K) ⊆M ⊆ L. We say that
M : K is a splitting field extension for S if M is the smallest subfield
of L containing φ(K) over which every polynomial f ∈ S splits.

We note first in the context of part (i) of this definition that, when K ⊆ L,
it follows that f splits over L if f = λ(t−α1) · · · (t−αn), for some λ ∈ K and
α1, . . . , αn ∈ L. Note also that when f ∈ K[t] \ K, then f necessarily splits
over an algebraic closure of K.

Next, in the context of parts (ii) and (iii) of the definition, we emphasise that
the concept of the smallest subfield with a specified property is well-defined.
Thus, if M : K a splitting field extension for f and φ(K) ⊆ M ⊆ L, and if
in addition F is a field with φ(K) ⊆ F ⊆ L having the property that f splits
over F , then the minimality of M means that one necessarily has M ⊆ F .
Likewise, if M : K a splitting field extension for S and φ(K) ⊆ M ⊆ L, and
if in addition F is a field with φ(K) ⊆ F ⊆ L having the property that every
polynomial in S splits over F , then M ⊆ F .
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The next proposition is simple and intuitive, but useful to record.

Proposition 5.1. Suppose that L : K is a splitting field extension for the poly-
nomial f ∈ K[t]\K with associated embedding φ : K → L. Let α1, . . . , αn ∈ L
be the roots of φ(f). Then L = φ(K)(α1, . . . , αn).

Proof. Identify K with its isomorphic image in L, so that we can assume
K ⊆ L. Put F = K(α1, . . . , αn). Thus K ⊆ F ⊆ L and f splits over F . Since
L : K is a splitting field extension for f , we must have L ⊆ F . But then the
minimality of L ensures that L = F = K(α1, . . . , αn). □

Example 6. We obtain a splitting field extension for f = t4 − 2 ∈ Q[t]. Let
α = 4

√
2 ∈ R+, and write i =

√
−1. Then f = (t2 − α2)(t2 + α2), and the

roots of f over Q are α, −α, iα and −iα. In particular, we conclude via
Proposition 5.1 that Q(α, iα) : Q is a splitting field extension for f . Note that
Q(α, iα) = Q(α, i), and so Q(α, i) : Q is also a splitting field extension for f .

Proposition 5.2. Suppose that L : K is a splitting field extension for the
polynomial f ∈ K[t] \K. Then [L : K] ≤ (deg f)!.

Proof. This is problem 5 from Problem Sheet 7. □

By working a little harder, one can prove that when L : K is a splitting
field extension for some polynomial f ∈ K[t] with deg f = n ≥ 1, then [L : K]
divides n!. The proof uses the tower law in combination with the fact that k!m!
divides (k +m)!, a property that in turn is a consequence of the integrality of
the binomial coefficient

(
m+k
k

)
.

Example 7 (continuing Example 6). We see that f = t4 − 2 is irreducible over
Z by Eisenstein’s criterion with p = 2, and hence irreducible over Q by Gauss’
Lemma. Then mα(Q) = t4 − 2 and [Q(α) : Q] = 4. By the tower law, one has

[Q(α, iα) : Q] = [Q(α, i) : Q] = [Q(α, i) : Q(α)][Q(α) : Q].

Since i is a root of t2 + 1, the ploynomial mi(Q(α)) divides t2 + 1. Hence
degmi(Q(α)) = 1 or 2. If degmi(Q(α)) = 1, then i ∈ Q(α) ⊆ R, which yields
a contradiction, since i ̸∈ R. Then we must have mi(Q(α)) = t2+1, and hence
[Q(α, i) : Q(α)] = 2. We therefore conclude that [Q(α, iα) : Q] = 2 · 4 = 8.

Suppose that L : K is a splitting field extension for some polynomial f ∈
K[t]\K. Then on recalling that field homomorphisms are necessarily injective,
it follows from Proposition 3.1 that each element of Gal(L : K) permutes the
roots of f , and hence corresponds to an element of the permutation group Sd,
where d denotes the number of distinct roots of f . Consequently Gal(L : K)
corresponds to a subgroup of Sd.

Example 8 (continuing Example 7). We construct the elements of the group
Gal(Q(α, i) : Q). This we achieve by first constructing each Q-homomorphism
σ : Q(α) → Q(α, i), extending σ to a homomorphism τ : Q(α, i) → Q(α, i).
By Theorem 3.4, we then have τ ∈ Aut(Q(α, i)), whence τ ∈ Gal(Q(α, i) : Q).
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We also know from Corollary 3.7 that every element of Gal(Q(α, i) : Q) can be
constructed in this way. Finally, we know that σ(α) must be a root of mα(Q).

For instance, we can define σ : Q(α) → Q(α, i) by taking σ(α) = iα. We
know that {1, α, α2, α3} is a basis for Q(α) : Q, so σ is given by

σ(a+ bα + cα2 + dα3) = a+ biα + c(iα)2 + d(iα)3

= a+ biα− cα2 − diα3,

where a, b, c, d ∈ Q. Then we can extend σ to τ : Q(α, i) → Q(α, i) by taking
τ(i) = −i. Note that, by Theorem 3.2, our choice here is limited to the roots
of σ(mi(Q(α))) = t2 + 1 over Q(α, i). As {1, i} is a basis for Q(α, i) : Q(α),
we find that τ is given by

τ(u+ iv) = σ(u)− iσ(v)

where u, v ∈ Q(α). Each element of Gal(Q(α, i) : Q) corresponds to a permu-
tation of the roots of f , and τ corresponds to the permutation (α iα)(−α −iα).
We leave the reader to determine the remaining 7 elements of G = Gal(Q(α, i) :
Q), and to identify in this way the subgroup of S4 to which G is isomorphic.

While Theorem 3.4 tells us that τ ∈ Aut(Q(α, i)), this can also be seen by
noting that

{1, α, α2, α3, i, iα, iα2, iα3}
is a basis for Q(α, i) : Q, and

{τ(1), τ(α), τ(α2), τ(α3), τ(i), τ(iα), τ(iα2), τ(iα3)}
= {1, iα,−α2,−iα3,−i, α, iα2,−α3}

is also a basis for Q(α, i) : Q. Thus τ must be bijective.

We next take advantage of the existence of an algebraic closure to construct
a splitting field extension L : K for a given set of polynomials f ∈ K[t] \K.

Proposition 5.3. Given S ⊆ K[t] \K, there exists a splitting field extension
L : K for S, and L : K is an algebraic extension. More explicitly, suppose that
K is an algebraic closure of K, and that K : K is an extension relative to the
embedding φ : K → K. Let

A = {α ∈ K : α is a root of φ(f), for some f ∈ S}.
Put K ′ = φ(K). Then K ′(A) : K is a splitting field extension for S.

Proof. The explicit construction provides the proof of the initial claim, and so
we may concentrate on the former. Let K be an algebraic closure of K, and
identify K with its isomorphic image in K. We are thus at liberty to assume
that K ⊆ K. For every f ∈ S, the polynomial f splits over K. Let

A = {α ∈ K : α is a root of some f ∈ S},
and note that every element of A is algebraic over K. Thus, with K(A) the
smallest subfield of K containing both K and A, every polynomial f ∈ S
splits over K(A). In order to confirm the minimality property of this putative
splitting field extension K(A) : K, note that since K is a field, one finds that
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K[t] is a UFD. Thus, any subfield of K containing K over which every non-
constant f ∈ S splits must contain A, and hence such a subfield of K must
contain K(A). Then K(A) : K is indeed a splitting field extension for S.

In order to see that K(A) : K is algebraic, consider an arbitrary element
β ∈ K(A). Then β ∈ K. Consequently, since K : K is an algebraic extension,
it follows that β is algebraic over K, and the desired conclusion follows.

If we do not assume that K ⊆ K, then we may replace K by K ′ = φ(K) in
the above argument. □

Splitting field extensions are unique up to isomorphism.

Theorem 5.4. Let f ∈ K[t] \ K, and suppose that L : K and M : K are
splitting field extensions for f . Then L ≃M , and thus [L : K] = [M : K].

Proof. We identify K with its isomorphic image in L. We have that M : K is
an extension relative to an embedding φ : K →M , and that f splits over M .
Let K ′ = φ(K) and f ′ = φ(f). Also, let α1, . . . , αn ∈ L be the roots of f in
L. Thus, in particular, one has L = K(α1, . . . , αn).

We now set about establishing that L ≃M . Let M be an algebraic closure
of M , and assume that M ⊆ M . Then M : M and M : K are both alge-
braic extensions, whence M : K is also an algebraic extension. Since M is
algebraically closed, it follows that M is an algebraic closure of K. Observe
next that we have a homomorphism φ : K → M ⊆ M , and we know that
L : K is an algebraic extension. We therefore deduce via Theorem 4.6 that
the map φ can be extended to a homomorphism ψ : L → M . For 1 ≤ i ≤ n,
let βi = ψ(αi). The polynomial f factors over L[t] in the shape

f = λ
n∏
i=1

(t− αi),

where λ ∈ K, and so

f ′ = φ(f) = ψ(f) = ψ(λ)
n∏
i=1

(t− ψ(αi)) = φ(λ)
n∏
i=1

(t− βi).

We therefore deduce that f ′ splits over K ′(β1, . . . , βn).

L M

K M

ψ

φ

Next, sinceM [t] is a UFD and f ′ splits overM , we see that β1, . . . , βn ∈M .
But K ′ = φ(K) ⊆ M , so K ′(β1, . . . , βn) ⊆ M . Since M : K is a splitting
field extension for f , we must have K ′(β1, . . . , βn) =M . Also, since ψ extends
φ, we find that ψ(L) = ψ(K(α1, . . . , αn)) = K ′(β1, . . . , βn). Consequently, on
noting that ψ is an injective homomorphism, we conclude that L ≃ M . To
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see that [L : K] = [M : K], one merely checks that ψ maps a basis for L as a
vector space over K to a corresponding basis for M over K.

L ψ(L) M

K φ(K) = K ′ K ′(β1, . . . , βn) M

ψ

φ

□

A more general conclusion is obtained as a straightforward exercise.

Theorem 5.5. Suppose that S ⊆ K[t]\K, and suppose that L : K and M : K
are splitting field extensions for S. Then L ≃M and [L : K] = [M : K].

6. Normal extensions and composita

6.1. Normal extensions and splitting field extensions. In Examples
4 and 5, we saw that Gal(Q( 3

√
2) : Q) has a small Galois group, whilst

Gal(Q(e2πi/5) : Q) has a relatively large Galois group. In general, Galois
groups associated with splitting field extensions are significantly richer in struc-
ture than those associated with field extensions in which polynomials do not
necessarily split. This observation motivates the following definition.

Definition 22. The extension L : K is normal if it is algebraic, and every
irreducible polynomial f ∈ K[t] either splits over L or has no root in L.

Our first result shows that K-homomorphisms from fields L extending K
into K are in fact automorphisms of L when L : K is normal.

Proposition 6.1. Suppose that L : K is a normal extension with K ⊆ L ⊆ K.
Then for any K-homomorphism τ : L→ K, we have τ(L) = L.

Proof. This is problem 3(a) of Problem Sheet 8. □

Note here that since L : K is algebraic, any algebraic closure of K is an
algebraic closure of L. Our next conclusion provides an important criterion
for determining whether or not a given extension is normal.

Proposition 6.2. An extension L : K is a finite, normal extension if and
only if it is a splitting field extension for some f ∈ K[t] \K. More generally,
an extension L : K is normal if and only if it is a splitting field extension for
some S ⊆ K[t] \K.

Proof. Assume that K ⊆ L ⊆ K, where K is a fixed algebraic closure of K.
We first consider the case where L : K is a finite extension.

Suppose that L : K is a finite, normal extension (and thus L : K is neces-
sarily algebraic). Since [L : K] < ∞, there exist α1, . . . , αn ∈ L having the
property that L = K(α1, . . . , αn). Let

f = mα1(K) · · ·mαn(K).
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Then f ∈ K[t]\K, and each irreducible factor mαi
(K) of f has a root αi in L.

Since L : K is normal, each polynomial mαi
(K) must split over L (1 ≤ i ≤ n),

and consequently f must split over L. With α1, . . . , αn, . . . , αr ∈ L all the
roots of f , we have

K(α1, . . . , αr) = K(α1, . . . , αn) = L,

and so we infer from Proposition 5.1 that L : K is a splitting field extension
for f .

Now suppose that L : K is a splitting field extension for some polynomial
f ∈ K[t] \K. Thus Proposition 5.1 implies that [L : K] < ∞. Suppose that
g ∈ K[t] is irreducible over K and has a root γ ∈ L. Let δ ∈ K be a root of
g. Thus, with λ ∈ K denoting the leading coefficient of g, one has

λmγ(K) = g = λmδ(K).

We therefore infer from Theorem 3.2 that we can extend the identity map onK
to an isomorphism σ : K(γ) → K(δ) satisfying the property that σ(γ) = δ. We
next observe that L = K(α1, . . . , αn), where α1, . . . , αn ∈ K are the distinct
roots of f . These roots are, of course, algebraic over K and hence also over
K(γ). Since L(γ) : K(γ) is algebraic, it follows from Theorem 4.6 that we
can extend σ to a homomorphism τ : L(γ) → K. But τ extends the identity
map on K, so for 1 ≤ i ≤ n we have 0 = τ(f(αi)) = f(τ(αi)). Consequently,
since τ is injective, we deduce that τ(α1), . . . , τ(αn) ∈ K are distinct roots of
f . Moreover, the ring K[t] is a UFD, and so we must have

{τ(α1), . . . , τ(αn)} = {α1, . . . , αn}.

We therefore deduce that τ(L) = L, whence an application of Theorem 3.4
shows that τ ∈ Aut(L).

At this stage, we have shown that τ is an extension of the automorphism τ |L
of L satisfying the property that τ(γ) = δ. It therefore follows from Theorem
3.2 that

mδ(L) = τ |L(mγ(L)) = τ(mγ(L)).

Thus

[L(γ) : L] = degmγ(L) = [L(δ) : L].

Consequently, since γ ∈ L, we conclude that 1 = [L(γ) : L] = [L(δ) : L],
whence δ ∈ L. This conclusion holds for all roots δ ∈ K of g, and so g splits
over L. This conclusion, in turn, holds for all irreducible polynomials g ∈ K[t]
having a root in L, and hence L : K is a normal extension.

We now turn to the more general conclusion of the proposition. Suppose
that L : K is normal, and hence also algebraic. Let

S = {g ∈ K[t] : g is irreducible over K[t] and g(α) = 0 for some α ∈ L}.

Then every element of S splits over L. But no field F smaller than L has the
property that S splits over F , and so L : K is a splitting field extension for S.
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Finally, suppose that L : K is a splitting field extension for some set S ⊆
K[t] \K. Writing

A = {β ∈ L : β is a root of some f ∈ S},
we see that L = K(A). It follows from Proposition 5.3 that L : K is algebraic.
Consider a polynomial g ∈ K[t] having the property that g is irreducible over
K and g(γ) = 0 for some γ ∈ L. By Proposition 1.9, we discern that γ ∈ K(D)
for some finite subsetD of A. For each β ∈ D, choose fβ ∈ S in such a way that
β is a root of fβ. Let D

′ ⊆ K be the set of all roots of {fβ : β ∈ D} ⊆ S. Then
D′ is a finite set having the property that D ⊆ D′ ⊆ L, and further K(D′) : K
is a splitting field extension for the polynomial h =

∏
β∈D fβ. But then our

earlier conclusion ensures that K(D′) : K is a finite, normal extension with
γ ∈ D′. Thus g splits over K(D′), and hence also over L. We thus conclude
that L : K is normal. □

The normal property of field extensions is inherited by the upper part of a
tower of extensions.

Proposition 6.3. Suppose that L : M : K is a tower of field extensions and
L : K is a normal extension. Then L :M is also a normal extension.

Proof. This is problem 3(b) of Problem Set 8. □

6.2. Normal extensions and automorphisms. We now turn our atten-
tion to the properties of homomorphisms and automorphisms associated with
normal extensions.

Theorem 6.4. Suppose that M : L : K is a tower of field extensions having
the property that M : K is normal. Assume that K ⊆ L ⊆ M . Then the
following are equivalent:

(i) the field extension L : K is normal;
(ii) any K-homomorphism of L into M is an automorphism of L;
(iii) whenever σ :M →M is a K-automorphism, then σ(L) ⊆ L.

Proof. We identify K and L with their respective isomorphic images inM , and
M with its isomorphic image in K, so as to assume that K ⊆ L ⊆ M ⊆ K.
Note that since M : K is an algebraic extension, then so is L : K.

We first show that (i) implies (iii). Suppose that L : K is normal, and that
σ : M → M is a K-automorphism. Let α ∈ L, and write g = mα(K). Then
g(σ(α)) = σ(g(α)) = σ(0) = 0, and so σ(α) is a root of g. But L : K is normal,
and so σ(α) ∈ L. Since this holds for all α ∈ L, we conclude that σ(L) ⊆ L.

Next we show that (iii) implies (ii). Suppose that (iii) holds, and that
ψ : L → M is a K-homomorphism. Since M : K is an algebraic extension,
so is M : L. We thus infer from Theorem 4.6 that we can extend ψ to a
homomorphism σ : M → K. Since σ is a K-homomorphism and M : K is
normal, it follows from Proposition 6.1 that σ(M) =M . Having assumed (iii),
we consequently have ψ(L) = σ(L) ⊆ L. Finally, we conclude from Theorem
3.4 that ψ ∈ Aut(L).
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Finally, we show that (ii) implies (i). Suppose that (ii) holds, and that
g ∈ K[t] is irreducible over K and has the property that g has a root α in
L. Thus, for some λ ∈ K×, we have g = λmα(K). If β ∈ M a root of
g, then mβ(K) = λ−1g = mα(K). Then Theorem 3.2 shows that there is a
K-isomorphism ψ : K(α) → K(β) having the property that ψ(α) = β. By
Theorem 4.6, we can extend ψ to a homomorphism σ : L → K, and then
σ to a homomorphism τ : M → K. From here, Proposition 6.1 shows that
τ(M) = M . Hence σ(L) = τ(L) ⊆ τ(M) = M . Having assumed (ii), we infer
that σ ∈ Aut(L). Thus β = σ(α) ∈ L. But g splits over M , and so the latter
conclusion holds for all roots β of g. Thus g splits over L. This conclusion, in
turn, holds for all irreducible g ∈ K[t], and thus L : K is normal. □

The Galois group of automorphisms associated with a normal extension acts
on the roots of polynomials in a particularly elegant manner.

Proposition 6.5. Suppose that M : K is a normal extension. Then:

(a) for any σ ∈ Gal(M : K) and α ∈M , we have mσ(α)(K) = mα(K);
(b) for any α, β ∈ M with mα(K) = mβ(K), there exists τ ∈ Gal(M : K)

having the property that τ(α) = β.

Proof. By identifying K with its isomorphic image inside M , there is no loss
in assuming that K ⊆ M ⊆ K, where K is an algebraic closure of K, and
hence also of M .

We first establish (a). Consider σ ∈ Gal(M : K) and α ∈ M , and write
g = mα(K). Then 0 = σ(g(α)) = g(σ(α)), and thus mσ(α)(K) = g = mα(K).

Next we establish (b). Consider α, β ∈M with mα(K) = mβ(K). Theorem
3.2 shows that there is a K-isomorphism σ : K(α) → K(β) with σ(α) = β,
and Theorem 4.6 then delivers the existence of a homomorphism τ : M → K
extending σ. Then, by Proposition 6.1, one has τ(M) = M , and thus we
conclude that τ ∈ Gal(M : K). □

6.3. Composita. A natural approach to generating new fields from old ones
is via the compositum of two fields.

Definition 23. Let K1 and K2 be fields contained in some field L. The
compositum of K1 and K2 in L, denoted by K1K2, is the smallest subfield of
L containing both K1 and K2.

Let E : K and F : K be field extensions with E, F and K all contained
in a field L. Suppose that E = K(A) for some set A contained in E, and
F = K(B) for some set B contained in F . Then EF must contain K, A and
B, and hence must contain K(A∪B). On the other hand, the field K(A∪B)
contains both E = K(A) and F = K(B). Hence EF = K(A ∪ B). For
instance, one has Q(

√
2)Q(

√
3) = Q(

√
2,
√
3).

It is straightforward to show that composita of finite extensions are finite.

Proposition 6.6. Suppose that E : K and F : K are finite extensions having
the property that K, E and F are contained in a field L. Then EF : K is a
finite extension.
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Proof. This is problem 1(a) of Problem Sheet 9. □

Our next result shows how to infer normality from field extensions combined
in various ways.

Theorem 6.7. Let E : K and F : K be finite extensions having the property
that K, E and F are contained in a field L.

(a) When E : K is normal, then EF : F is normal.
(b) When E : K and F : K are both normal, then EF : K and E ∩ F : K

are normal.

Proof. We first establish the claim (a). Suppose that E : K is normal. Then
since E : K is finite, we have that E : K is a splitting field extension for some
g ∈ K[t]\K. Notice here that if E = K, then we may take g = t−1. Denote by
α1, . . . , αr ∈ E the roots of g. Then we have E = K(α1, . . . , αr). We observe
next that F (α1, . . . , αr) is a field containing both E and F , and any subfield
of this field containing both E and F necessarily contains α1, . . . , αr and thus
contains F (α1, . . . , αr). We must therefore have EF = F (α1, . . . , αr). We
therefore conclude that EF : F is a splitting field extension for g, and hence
EF : F is a normal extension.

(b) Suppose that E : K and F : K are normal extensions. Then E : K is a
splitting field extension for some g ∈ K[t] \K, and F : K is a splitting field
extension for some h ∈ K[t] \K. Let

A = {α ∈ E : α is a root of g} and B = {β ∈ F : β is a root of h}.
Thus E = K(A) and F = K(B), and we have EF = K(A ∪ B). Then we
deduce that EF : K is a splitting field extension for gh, whence EF : K is
normal.

Problem 1(b) on Problem Sheet 9 is devoted to showing that E ∩ F : K is
normal. □

We leave to the reader the analogue of this theorem concerning the situation
in which E : K and F : K are permitted to be infinite extensions.

Example. Set α = 3
√
2 ∈ R+ and i =

√
−1 ∈ C. Then Q(i) : Q is a normal

extension, since it is the splitting field for mi(Q) = t2 + 1. However, one finds
that Q(α) : Q is not a normal extension extension, since mα(Q) = t3 − 2 does
not split over Q(α). We infer Theorem 6.7 that Q(i)Q(α) : Q(α) is a normal
extension, as can be observed by noting that it is the splitting field extension
for t2+1. On the other hand, the field extension Q(i)Q(α) : Q is not a normal
extension, since t3 − 2 does not split over Q(i)Q(α).

6.4. Normal closures (non-examinable). It is possible to avoid working
in the whole algebraic closure of a field K by working instead inside a field
designed for normality.

Definition 24. Let L : K be an algebraic extension with K ⊆ L. A normal
closure of L : K is a field M having the property that

(i) M : L is an extension, and
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(ii) M : K is a normal extension, and
(iii) if N ⊆ M has the property that N : L is an extension and N : K is a

normal extension, then N =M .

Proposition 6.8. Suppose that L : K is an algebraic extension. Then there
exists a normal closure M of L : K. When L : K is finite, so is M : K.

Proof. There is no loss of generality in assuming that K ⊆ L ⊆ K. First
suppose that L : K is a finite extension. Then L = K(α1, . . . , αn), for some
α1, . . . , αn ∈ L. Let f = mα1(K) · · ·mαn(K), and let M : L be a splitting field
extension for f with M ⊆ K. Thus M : K is a splitting field extension for f ,
so M : K is a normal extension and M = K(α1, . . . , αn, . . . , αr), where

f = (t− α1)(t− α2) · · · (t− αr).

Suppose that N ⊆ M has the property that L ⊆ N and N : K is a normal
extension. Then for 1 ≤ i ≤ n, the polynomial mαi

(K) is irreducible and
has a root in L. Further, since L ⊆ N , one sees that mαi

(K) splits over N .
Consequently, the polynomial f splits over N , and so α1, . . . , αn, . . . , αr ∈ N .
We therefore deduce that M ⊆ N , and so M = N . We thus conclude that M
is a normal closure for L : K. Note that, as an easy exercise, one may check
that [M : K] <∞.

Now suppose that L : K is an infinite algebraic extension with K ⊆ L. Let
A ⊆ L have the property that L = K(A), and put S = {mα(K) : α ∈ A}.
Let M ⊆ K have the property that M : K is a splitting field extension for
S. Then L ⊆ M and M : K is a normal extension. From here, by arguing as
above, one finds that M is a normal closure of L : K. □

One can show that if M and N are normal closures of L : K, then M :
L and N : L are isomorphic extensions. As we have already noted, it is
frequently possible in arguments to use normal closures as a substitute for
algebraic closures. Finally, we note that Proposition 6.6 ensures that when
E : K and F : K are finite extensions having the property that K, E and F
are contained in a field L, and M is a normal closure of EF : K, then M : K
is a finite extension.

7. Separability

We have seen (Proposition 6.5) that when M : K is a normal extension,
then there exist elements of Gal(M : K) mapping one root (lying in M) of a
polynomial irreducible over K to another. The number of such mappings is
plainly as large as possible when all of the roots of this polynomial are distinct.
This observation motivates a definition.

Definition 25. Let K be a field.

(i) An irreducible polynomial f ∈ K[t] is separable over K if it has no
multiple roots, meaning that f = λ(t − α1)(t − α2) · · · (t − αd), where
α1, . . . , αd ∈ K are distinct.
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(ii) A non-zero polynomial f ∈ K[t] is separable over K if its irreducible
factors in K[t] are separable over K.

(iii) When L : K is a field extension, we say that α ∈ L is separable over K
when α is algebraic over K and mα(K) is separable.

(iv) An algebraic extension L : K is a separable extension if every α ∈ L is
separable over K.

Example. We show that not every irreducible polynomial over a field K is
separable over K. Let p be a prime number, and let K = Fp(y), where Fp
denotes the field with p elements and y is an indeterminate over Fp (so y is
transcendental over Fp). Put f = tp − y ∈ K[t], and let α ∈ K be a root of
f . Thus, we have αp = y. We show first that f is irreducible over K. Observe
that Fp(y) is the field of fractions of Fp[y], and the units in Fp[y] are the non-
zero elements of Fp. Then y is not a unit in Fp[y]. Moreover, were one to have
y = gh, with g, h ∈ Fp[y], then

1 = deg y = deg(gh) = deg g + deg h,

so that either deg g = 0 or deg h = 0. Thus we see that either g or h is a unit
in Fp[y]. So y is irreducible in Fp[y]. Consequently, since tp − y is primitive in
Fp[y], it follows by means of Eisenstein’s criterion using the irreducible y that
f = tp−y is irreducible over Fp[y]. Hence, by Gauss’s Lemma, we deduce that
f is also irreducible over Fp(y) = K. Finally, to see that f is not separable over
K, we use the fact that char(K) = p. Since p divides the binomial coefficients(
p
k

)
for 1 ≤ k < p, one has

(t− α)p = tp + (−1)pαp = tp − y.

Here we recall that when p = 2, then −y = y. Thus α is the only root of f ,
even though f is irreducible over K with deg f = p > 1.

Separability is a property inherited by intermediate subfields.

Proposition 7.1. Suppose that L : M : K is tower of algebraic field exten-
sions. Assume that K ⊆M ⊆ L ⊆ K, and suppose that f ∈ K[t] \K satisfies
the property that f is separable over K. If g ∈M [t] \M has the property that
g|f , then g is separable over M . Thus, if α ∈ L is separable over K then α is
separable over M , and if L : K is separable then so is L :M .

Proof. Suppose that g ∈M [t] satisfies the property that g|f , and suppose that
g0 ∈M [t] is a factor of g that is irreducible over M . Then g0|f , and hence we
deduce from Proposition 4.11 that g0 divides a factor f0 of f that is irreducible
over K. Thus f0 = g0h0 for some h0 ∈M [t]. Since f0 has deg f0 distinct roots
in K and deg f0 = deg g0 + deg h0, it follows from the fact that K[t] is a UFD
that g0 and h0 have respectively deg g0 and deg h0 distinct roots in K. In
particular, all factors g0 of g that are irreducible over M have deg g0 distinct
roots in K, whence g is separable over M .

Now suppose that α ∈ L is separable over K. Then α is algebraic over K,
and mα(K) is separable over K. Since mα(M)|mα(K), we find that mα(M)
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is separable over M , and hence α is separable over M . Hence, if L : K is
separable, then so is L :M . □

Separability is preserved under the action of homomorphisms.

Proposition 7.2. Suppose that L : M is an algebraic field extension. Let
α ∈ L and σ : M → M be a homomorphism. Then σ(mα(M)) is separable
over σ(M) if and only if mα(M) is separable over M .

Proof. This is problem 2 of Problem Sheet 9. □

Next we establish a strong connection between separability and extensions
of homomorphisms.

Theorem 7.3. Let L : K be a finite extension with K ⊆ L ⊆ K, whence
L = K(α1, . . . , αn) for some α1, . . . , αn ∈ L. Put K0 = K, and for 1 ≤ i ≤ n,
set Ki = Ki−1(αi). Finally, let σ0 : K → K be the inclusion map.

(i) If αi is separable over Ki−1 for 1 ≤ i ≤ n, then there are [L : K] ways
to extend σ0 to a homomorphism τ : L→ K.

(ii) If αi is not separable over Ki−1 for some i with 1 ≤ i ≤ n, then there are
fewer than [L : K] ways to extend σ0 to a homomorphism τ : L→ K.

Proof. Suppose that τ : L → K is a homomorphism extending σ0. Put σi =
τ |Ki

. Then σi : Ki → K is a homomorphism extending σi−1. Thus, each
homomorphism τ : L → K corresponds to a sequence of homomorphisms
σ1, . . . , σn, where σn = τ , and σi : Ki → K extends σi−1 for 1 ≤ i ≤ n.

Let j be an integer with 1 ≤ j ≤ n, and suppose that for 1 ≤ i < j, we
have homomorphisms σi : Ki → K having the property that σi extends σi−1.
By Corollary 3.3, the number of ways of extending σj−1 to a homomorphism
σj : Kj → K is equal to the number of distinct roots of σj−1(mαj

(Kj−1)) that

lie in K. By Corollary 4.7, this number is equal to the number of distinct roots
of mαj

(Kj−1) that lie in K. We note in this context that by Proposition 4.10,

since K ⊆ Kj−1 and Kj−1 : K is algebraic, then K = Kj−1. Thus, the number
of ways to extend σj−1 to σj is equal to degmαj

(Kj−1) = [Kj : Kj−1] if αj is
separable over Kj−1, and it is smaller than degmαj

(Kj−1) = [Kj : Kj−1] if αj
is not separable over Kj−1. The desired conclusion therefore follows in both
cases. □

The last theorem suggests a means of establishing that a given extension
L : K is separable, and this involves the following intermediate step.

Theorem 7.4. Let L : K be a finite extension with L = K(α1, . . . , αn). Set
K0 = K, and for 1 ≤ i ≤ n, inductively define Ki by putting Ki = Ki−1(αi).
Then the following are equivalent:

(i) the element αi is separable over Ki−1 for 1 ≤ i ≤ n;
(ii) the element αi is separable over K for 1 ≤ i ≤ n;
(iii) the extension L : K is separable.
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Proof. Suppose that K ⊆ L ⊆ K, where K is an algebraic closure of K, and
hence also of L.

We begin by showing that (i) implies (iii). Assume that (i) holds. Then
by Theorem 7.3, the number of K-homomorphisms τ : L → K is equal to
[L : K]. Let β1 ∈ L. Since [L : K] <∞, we know that β1 is algebraic over K,
whence L = K(β1, β2, . . . , βm), for some β2, . . . , βm ∈ L. Put K ′

0 = K, and for
1 ≤ j ≤ m, define K ′

j = K(β1, . . . , βj) = K ′
j−1(βj). It follows that β1 must be

separable over K, for otherwise we find from Theorem 7.3 that the number of
K-homomorphisms τ : L → K is smaller than [L : K]. Since this argument
holds for all β1 ∈ L, we conclude that L : K is separable.

The definition of a separable extension shows that (iii) implies (ii). Finally,
Proposition 7.1 confirms that (ii) implies (i). □

An immediate consequence of Theorems 7.3 and 7.4 is the following.

Corollary 7.5. Suppose that L : K is a finite extension. If L : K is a separable
extension, then the number of K-homomorphisms σ : L → K is [L : K], and
otherwise the number is smaller than [L : K].

Next we connect separability with the concept of splitting field extensions.

Corollary 7.6. Suppose that f ∈ K[t] \ K and that L : K is a splitting
field extension for f . Then L : K is a separable extension if and only if f
is separable over K. More generally, suppose that L : K is a splitting field
extension for S ⊆ K[t] \K. Then L : K is a separable extension if and only if
each f ∈ S is separable over K.

Proof. There is no loss of generality in assuming that K ⊆ L. We first consider
that case in which L : K is a splitting field extension for f ∈ K[t] \K.

Suppose first that f is separable over K. Then question 3(a) of problem
set 9 shows that L : K is separable. Conversely, suppose that L : K is a
separable splitting field extension for some polynomial f . Since every root of
f is algebraic over K, and L : K is separable, one discerns that every root of
f is separable over K. Hence f is separable over K.

Suppose next that L : K is a splitting field extension for S ⊆ K[t] \K, and
each element of S is separable over K. Then question 3(b) of problem set 9
shows that L : K is separable. Conversely, suppose L : K is a splitting field
extension for S ⊆ K[t] \K and L : K is a separable extension. Then for each
f ∈ S, the roots of f are separable over K, and so f is separable over K. □

We have already seen that when L : K is separable then so too is L : M ,
and the separability of M : K is inherited from that of L : K. To prove the
converse, it is convenient to have available the Primitive Element Theorem,
which is proved in §9. This part of the following theorem is therefore proved
as an exercise for §9.

Theorem 7.7. Suppose that L : M : K is a tower of algebraic extensions.
Then L : K is separable if and only if L :M and M : K are both separable.
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Proof. This is proved in problem 1 of Problem Sheet 11. □

Finally, we record some basic separability properties associated with com-
posita.

Theorem 7.8. Suppose that E : K and F : K are finite extensions with E ⊆ L
and F ⊆ L, where L is a field.

(a) When E : K is separable, then so too is EF : F ;
(b) When E : K and F : K are both separable, then so too are EF : K

and E ∩ F : K.

Proof. This is proved in problem 2 of Problem Sheet 11. □

8. Inseparable polynomials, differentiation, and Frobenius

8.1. Inseparable polynomials and differentiation. We next investigate
polynomials that fail to be separable. It transpires that both they, and their
field of definition, are highly constrained. Throughout, let K be a field.

Definition 26. A polynomial f ∈ K[t] is inseparable over K if f is not
separable over K, meaning that f has an irreducible factor g ∈ K[t] having
the property that g has fewer than deg g distinct roots in K.

It should be no surprise that inseparability, which involves the existence of
multiple roots, is closely connected with the operation of differentiation. This
we can define formally in the algebraic setting.

Definition 27. We define the derivative operator D : K[t] → K[t] by

D

(
n∑
k=0

akt
k

)
=

n∑
k=1

kakt
k−1.

One easily verifies the familiar properties of differentiation in this formal
setting. Thus, with α ∈ K and f, g ∈ K[t], one has

D(f + g) = Df +Dg, D(αf) = α(Df),

and for m,n ∈ N,
D(tmtn) = (m+ n)tm+n−1 = (Dtm)tn + tm(Dtn).

It therefore follows that for all f, g ∈ K[t], one has

D(fg) = (Df)g + f(Dg).

Theorem 8.1. Let f ∈ K[t] \K, and let L : K be a splitting field extension
for f . Assume that K ⊆ L. Then the following are equivalent:

(i) The polynomial f has a repeated root over L;
(ii) There is some α ∈ L for which f(α) = 0 = (Df)(α);
(iii) There is some g ∈ K[t] having the property that deg g ≥ 1 and g divides

both f and Df .

Proof. This is problem 1 of Problem Sheet 10. □
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We may now announce our first inseparability criterion.

Theorem 8.2. Suppose that f ∈ K[t] is irreducible over K. Then f is insep-
arable over K if and only if char(K) = p > 0, and f ∈ K[tp], which is to say
that f = a0 + a1t

p + · · ·+ amt
np, for some a0, . . . , am ∈ K.

Proof. Let f ∈ K[t] be irreducible over K. Suppose first that f is inseparable
over K, and write f(t) = a0 + a1t + · · · + ant

n, for some a0, . . . , an ∈ K.
Then there is some g ∈ K[t] having the property that deg g ≥ 1 and g divides
both f and Df . So f = gh for some h ∈ K[t]. Since f is irreducible and
g is not a unit, one sees that h must be a unit. But g divides Df , so f
divides Df . Since deg(Df) < deg f , and f does not divide any non-zero
polynomial of degree less than deg f , we must have Df = 0. Thus we deduce
that a1+2a2t+ · · ·+nantn−1 = Df = 0, whence rar = 0 for 1 ≤ r ≤ n. This is
impossible when char(K) = 0. Meanwhile, when char(K) = p > 0, it follows
that for each r with 1 ≤ r ≤ n, either p divides r or ar = 0. Hence, for some
m ∈ N and b0, . . . , bm ∈ K, one has

f = b0 + b1t
p + b2t

2p + · · ·+ bmt
mp ∈ K[tp].

Finally, suppose that char(K) = p > 0 and f ∈ K[tp]. Then Df = 0, and
hence by Theorem 8.1, one discerns that f is inseparable over K. □

Corollary 8.3. Suppose that char(K) = 0. Then all polynomials in K[t] are
separable over K.

8.2. The Frobenius map. We begin by defining a map that plays a central
role in the investigation of fields of positive characteristic.

Definition 28. Suppose that char(K) = p > 0. The Frobenius map ϕ : K →
K is defined by ϕ(α) = αp.

We now explore the properties of this mapping, focusing in the first instance
on the set of elements

Fixϕ(K) = {α ∈ K : ϕ(α) = α}.
Theorem 8.4. Suppose that char(K) = p > 0, and let F be the prime subfield
of K. Let ϕ : K → K denote the Frobenius map. Then ϕ is an injective
homomorphism, and Fixϕ(K) = F .

Proof. One has ϕ(1) = 1, and when α, β ∈ K, one has ϕ(αβ) = ϕ(α)ϕ(β), and

ϕ(α + β) =

p∑
k=0

(
p

k

)
αkβp−k = αp + βp = ϕ(α) + ϕ(β).

Hence ϕ is a homomorphism, necessarily injective since K is a field.

Next we observe that F = {c · 1K : c ∈ Z and 1 ≤ c ≤ p}, and
ϕ(c · 1K) = c · ϕ(1K) = c · 1K .

Thus F ⊆ Fixϕ(K). Meanwhile, every element of Fixϕ(K) is a root of the
polynomial tp − t, and this polynomial has at most p roots in K. Hence
F = Fixϕ(K). □
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Corollary 8.5. Suppose that char(K) = p > 0 and K is algebraic over its
prime subfield. Then the Frobenius map is an automorphism of K.

Proof. The Frobenius homomorphism ϕ fixes elements of the prime subfield.
Consequently, by Theorem 3.4 (a consequence of the extension of homomor-
phisms theorem), the map ϕ acts as an automorphism on any algebraic exten-
sion of the prime subfield. □

Corollary 8.6. Suppose that char(K) = p > 0 and K is algebraic over its
prime subfield. Then all polynomials in K[t] are separable over K.

Proof. Since the Frobenius homomorphism maps K onto K, every element of
K is a p-th power. Then if f is irreducible overK, one cannot have f(t) = g(tp)
for any g ∈ K[t], for then f(t) = g∗(t)p for some g∗ ∈ K[t], contradicting
the irreducibility of f . We therefore conclude from Theorem 8.2 that f is
separable. □

It follows from this corollary that one can have an inseparable polynomial
over a field K only when K is not algebraic over its prime subfield, which is
to say that K is transcendental over Fp for some prime p. This is consistent
with the example K = Fp(t) and the polynomial xp − t over K[x].

The argument of the proof of Corollary 8.6 may be extended.

Theorem 8.7. Suppose that char(K) = p > 0. Let

f(t) = g(tp) = a0 + a1t
p + · · ·+ an−1t

(n−1)p + tnp

be a non-constant monic polynomial over K. Then f(t) is irreducible in K[t]
if and only if g(t) is irreducible in K[t] and not all the coefficients ai are p-th
powers in K.

Proof. We prove the forward implication via the contrapositive. First suppose
that g is reducible in K[t], so that g = g1g2 for some g1, g2 ∈ K[t] with deg g1 ≥
deg g2 ≥ 1. Then f(t) = g(tp) = g1(t

p)g2(t
p), and deg g1(t

p) ≥ deg g2(t
p) ≥ 1.

Consequently, when g(t) is reducible, so is f(t). Equivalently, when f(t) is
irreducible, so too is g(t).

Suppose next that for 1 ≤ i ≤ n, one has ai = bpi for some bi ∈ K. Then

f(t) = (b0 + b1t+ · · ·+ bn−1t
n−1 + tn)p,

so that f is reducible. Consequently, if f is irreducible then not every coefficient
ai is a pth power.

Now we address the reverse implication, again via the contrapositive. Sup-
pose that f is reducible. Then we can write f = fm1

1 · · · fmr
r , where f1, . . . , fr

are distinct monic irreducible polynomials over K and m1, . . . ,mr ∈ N. Sup-
pose first that r > 1. In this case we put h1 = fm1

1 and h2 = f/h1.
Thus hcf(h1, h2) = 1, so the ideal generated by h1 and h2 is the entire ring
K[t]. Hence there exist λ1, λ2 ∈ K[t] such that λ1h1 + λ2h2 = 1. But since
f(t) = g(tp), we know that Df = 0, and so (Dh1)h2 + h1(Dh2) = 0. Hence

Dh1 = λ1h1(Dh1) + λ2h2(Dh1) = λ1h1(Dh1)− λ2h1(Dh2),
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and so h1 divides Dh1. So Dh1 must be 0. A similar argument shows that Dh2
must be 0. Thus, for suitable non-constant monic polynomials u1, u2 ∈ K[t],
one has h1(t) = u1(t

p) and h2(t) = u2(t
p). But then we have g(t) = u1(t)u2(t),

so that g(t) is reducible in K[t].

Now suppose that r = 1, so that f = fm1 , where f1 is monic and irreducible
over K and m = m1 > 1. If p|m then f = hp for some non-constant monic
polynomial h = c0 + c1t + · · · + cst

s ∈ K[t]. But then f = hp = cp0 + cp1t
p +

· · · + cpst
sp, and so the coefficients ai are all p-th powers. If p ∤ m, meanwhile,

then 0 = Df = m(Df1)f
m−1
1 , and so Df1 = 0. Hence, for a suitable non-

constant monic polynomial g1 ∈ K[t], one has f1(t) = g1(t
p), whence g = gm1

is reducible. □

9. The Primitive Element Theorem

In many circumstances, extensions of the shape K(α) : K, for some α ∈ K,
are very convenient to handle. Fortunately, many of the extensions that we
seek to investigate may be realised as such an extension.

Definition 29. Suppose that L : K is a field extension relative to the embed-
ding φ : K → L. We say that L : K is a simple extension if there is some
γ ∈ L having the property that L = φ(K)(γ).

Theorem 9.1 (The Primitive Element Theorem). Let L : K be a finite, sep-
arable extension with K ⊆ L. Then L : K is a simple extension.

Proof. Since L : K is a finite extension, it is algebraic, and we may assume
without loss that L ⊆ K, where K is an algebraic closure of K. Suppose first
that K is finite. Then L is finite with |L| = |K|[L:K]. Thus L× = L ∖ {0} is
cyclic as a multiplicative group, with some generator γ ∈ L×. Consequently,
one has L = K(γ).

Now suppose that K is infinite. We proceed by induction on the degree
[L : K] of the field extension. When [L : K] = 1, the desired conclusion is
trivial. Suppose then that the conclusion of the theorem has been established
for all degrees smaller than n, and consider an extension L : K of degree n.
Let α ∈ L be any element of largest degree over K. If L = K(α), then we are
done, so we may suppose that there exists β ∈ L \K(α). If one were to have
[K(α, β) : K] < n, then K(α, β) : K would be simple, say K(α, β) = K(γ) for
some γ ∈ L. Yet [K(γ) : K] = [K(α, β) : K] > [K(α) : K], whence the degree
of γ exceeds the degree of α, contradicting our earlier maximal assumption.
Thus [K(α, β) : K] = n = [L : K] and L = K(α, β).

Since L : K is separable, Corollary 7.5 shows that there are [L : K] = n
distinct K-homomorphisms φi : K(α, β) → K (1 ≤ i ≤ n). We define

f =
∏

1≤i<j≤n

((φi(α)− φj(α)) + (φi(β)− φj(β)) t) .

This polynomial is not identially zero, for the vanishing of the factor indexed
by i and j implies that φi(α) = φj(α) and φi(β) = φj(β), whence φi = φj.
Since K is infinite, therefore, one sees that there exists δ ∈ K with f(δ) ̸= 0.
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Set γ = α + βδ. It is simple to check that φ1, . . . , φn take distinct values on
γ. For if i < j and φi(γ) = φj(γ), then one has

0 =
∏

1≤i<j≤n

(φi(α + δβ)− φj(α + δβ)) = f(δ),

contradicting our earlier choice of δ. It follows that φ1, . . . , φn must restrict to
distinct K-homomorphisms from K(γ) into K. Corollary 7.5 therefore reveals
that [K(γ) : K] ≥ n. Since [L : K] = n and K(γ) ⊆ L, we conclude that
[K(γ) : K] = n and L = K(γ). Thus L : K is indeed simple, confirming the
inductive step. □

A straightforward consequence of this conclusion is the following.

Corollary 9.2. Suppose that L : K is an algebraic, separable extension, and
suppose that for every α ∈ L, the polynomial mα(K) has degree at most n over
K. Then [L : K] ≤ n.

In problems 4 and 5 of Problem Sheet 9, you exhibit a finite extension which
is not simple. This example has the following shape. Let p be a prime, and
denote by Fp the finite field with p elements. Consider indeterminates x and
y, so that x and y are transcendental over Fp. We set K = Fp(xp, yp) and
L = Fp(x, y). Then L : K is a finite algebraic extension that is not simple.
Note that L : K is not a separable extension, since t − xp and t − yp are not
separable over K.

10. Fixed fields and Galois extensions

Throughout, we assume that L : K is a field extension withK ⊆ L. We have
previously introduced notation for the set of K-automorphisms of L, namely
Gal(L : K). We now introduce notation for the set of elements in L fixed
under the action of a given subgroup of automorphisms.

Definition 30. Let L : K be a field extension. When G is a subgroup of
Aut(L), we define the fixed field of G to be

FixL(G) = {α ∈ L : σ(α) = α for all σ ∈ G}.

It is relatively straightforward to establish the following relations.

Proposition 10.1. Let K, M and L be fields with K ⊆ L and M ⊆ L.
Suppose that G and H are subgroups of Aut(L). Then one has the following:

(a) if K ⊆M then Gal(L : K) ⩾ Gal(L :M);
(b) if G ⩽ H, then FixL(G) ⊇ FixL(H);
(c) one has K ⊆ FixL(Gal(L : K));
(d) one has G ⩽ Gal(L : FixL(G));
(e) one has Gal(L : K) = Gal(L : FixL(Gal(L : K)));
(f) one has FixL(G) = FixL(Gal(L : FixL(G))).
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Proof. In order to establish the first claim (a), we have merely to note that
when K ⊆ M , then every M -automorphism of L is automatically an K-
automorphism, since all elements of K are automatically fixed by any homo-
morphism fixing elements of M . Thus Gal(L :M) ⊆ Gal(L : K).

Similarly, if G is a subgroup of H, then every element of L fixed under the
action of H is automatically fixed under the action of G, and hence FixL(H) ⊆
FixL(G). This establishes the claim (b).

In order to establish claim (c), consider an element k ∈ K. Then whenever
σ ∈ Gal(L : K), one has σ(k) = k, whence k ∈ FixL(Gal(L : K)).

Similarly, when σ ∈ G, it follows that whenever α ∈ FixL(G), one has
σ(α) = α, whence σ ∈ Gal(L : FixL(G)). This confirms the claim (d).

By applying the conclusion (d) with G = Gal(L : K), one deduces that
Gal(L : K) ⩽ Gal(L : FixL(Gal(L : K))). The reverse inclusion follows from
parts (a) and (c) on putting M = FixL(Gal(L : K)). This establishes the
claim (e).

In order to establish the claim (f), we first apply part (c) with K = FixL(G)
to deduce that FixL(G) ⊆ FixL(Gal(L : FixL(G))). The reverse inclusion
follows from parts (b) and (d) on putting H = Gal(L : FixL(G)). □

The situation is particularly simple when L : K is both normal and separa-
ble, motivating the following definition.

Definition 31. When L : K is a field extension, we say that L : K is a Galois
extension if it is an extension that is normal and separable.

Theorem 10.2. Suppose that L : K is an algebraic extension. Then L : K is
Galois if and only if K = FixL(Gal(L : K)).

Proof. Since L : K is algebraic, we may assume that K ⊆ L ⊆ K. Suppose
that L : K is Galois and write G = Gal(L : K). Then K ⊆ FixL(G). Next,
consider α ∈ FixL(G). Since L : K is normal, each root β of mα(K) lies in L.
Since there exists φ ∈ G with the property that φ(α) = β, and α ∈ FixL(G),
we find that β = φ(α) = α. Thus α is the only root of mα(K). But L : K is
separable, and so we must have mα(K) = t− α, whence α ∈ K. We therefore
conclude that FixL(G) ⊆ K, whence FixL(G) = K.

Now suppose that K = FixL(Gal(L : K)), and let G = Gal(L : K). Con-
sider an element α ∈ L \ {0}, and note that mα(K) is fixed under the ac-
tion of G, whence the G-orbit of α is finite. Let α1, α2, . . . , αr be the dis-
tinct elements in the G-orbit of α, and put fα = (t − α1)(t − α2) · · · (t − αr).
Then, since G permutes the roots of fα, we see that fα is fixed by G, whence
fα ∈ FixL(G)[t] = K[t]. By construction, the polynomial fα is separable over
K. But fα ∈ K[t] and α is a root of fα, so mα(K) divides fα, whence mα(K)
is separable over K. We note for future reference that, when |G| is finite, one
has degmα(K) ≤ deg fα ≤ |G|. Since this argument holds for all α ∈ L, it
follows that L : K is separable. Finally, on noting that L : K is a splitting
field extension for the set of polynomials {mα(K) : α ∈ L}, we find that L : K
is normal. Thus L : K is Galois. □
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Theorem 10.3. Suppose that L is a field and G is a finite subgroup of Aut(L),
and put K = FixL(G). Then L : K is a finite Galois extension with [L : K] =
|Gal(L : K)|, and furthermore G = Gal(L : K).

Proof. It follows from Proposition 10.1(f) that

FixL(Gal(L : K)) = FixL(Gal(L : FixL(G))) = FixL(G) = K,

whence Theorem 10.2 shows that L : K is a Galois extension. Next, the
argument of the second paragraph of the proof of Theorem 10.2 shows that
for each α ∈ L \ {0}, one has degmα(K) ≤ |G| < ∞, and so it follows from
Corollary 9.2 that [L : K] ≤ |G| < ∞. Thus, since L : K is finite and Galois,
and hence separable, Corollary 7.5 shows that [L : K] = |Gal(L : K)|.

Next, since L : K is a finite, separable extension, the Primitive Element
Theorem shows that L = K(γ) for some γ ∈ L. Thus |G| ≥ degmγ(K) =
[L : K] = |Gal(L : K)|. But G ⩽ Gal(L : K), and hence |G| ≤ |Gal(L : K)|,
whence |G| = |Gal(L : K)| and indeed G = Gal(L : K). □

Theorem 10.4. Suppose that L : K is a finite extension. Then, if L : K is a
Galois extension, one has |Gal(L : K)| = [L : K] and K = FixL(Gal(L : K)).
If L : K is not Galois, meanwhile, one has |Gal(L : K)| < [L : K] and K is a
proper subfield of FixL(Gal(L : K)).

Proof. If L : K is Galois, and hence separable, then Corollary 7.5 shows
that |Gal(L : K)| = [L : K], and it follows from Theorem 10.2 that K =
FixL(Gal(L : K)).

Meanwhile, if L : K is not Galois, then it follows from Proposition 10.1(c)
together with Theorem 10.2 that K ⊊ FixL(Gal(L : K)), whence K is a
proper subfield of FixL(Gal(L : K)). Thus [L : K] > [L : FixL(Gal(L : K))].
Applying Theorem 10.3 with G = Gal(L : K) in combination with Proposition
10.1(e), we find that

[L : FixL(Gal(L : K))] = |Gal(L : FixL(Gal(L : K))| = |Gal(L : K)|.

Thus [L : K] > [L : FixL(Gal(L : K))] = |Gal(L : K)|. □

It is useful to record the following easily obtained result.

Proposition 10.5. Suppose that L : K is a Galois extension, and further that
L :M : K is a tower of field extensions. Then L :M is a Galois extension.

Proof. By assumption, the field extension L : K is normal and separable. Then
it follows from Proposition 6.3 that L : M is normal, and from Theorem 7.7
that L :M is separable. Hence L :M is Galois. □

11. The main theorems of Galois theory

11.1. The Fundamental Theorem. The connection between fixed fields and
subgroups is particularly intimate, and this we now explore. Throughout, let
K and L be fields.
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Definition 32. Suppose that L : K is a field extension. When G a subgroup
of Aut(L), we write ϕ(G) for FixL(G), and when L :M : K0 is a tower of field
extensions with K0 = ϕ(Gal(L : K)), we write γ(M) for Gal(L :M).

Theorem 11.1 (The Fundamental Theorem of Galois Theory). Suppose that
L : K is a finite extension, let G = Gal(L : K), and put K0 = ϕ(G). Then
one has the following:

(a) the map ϕ is a bijection from the set of subgroups of G onto the set of
fields M intermediate between L and K0, and γ is the inverse map;

(b) if H ≤ G, then H ⊴ G if and only if ϕ(H) : K0 is a normal extension;
(c) if H ⊴ G, one has Gal(ϕ(H) : K0) ≃ G/H. In particular, if σ ∈

G, one has σ|ϕ(H) ∈ Gal(ϕ(H) : K0), and the map σ 7→ σ|ϕ(H) is a
homomorphism of G onto Gal(ϕ(H) : K0) with kernel H.

Proof. We begin by establishing the claim (a). Consider H ≤ G, so that H is a
finite subgroup of Aut(L). Then it follows from Theorem 10.3 that L : ϕ(H) is
a Galois extension andH = Gal(L : ϕ(H)). ThusH = γϕ(H), and on recalling
that when g ◦ f is a bijective map, then f is injective and g is surjective, we
deduce that ϕ is injective and γ is surjective.

Note next that K ⊆ K0, and hence [L : K0] ≤ [L : K] <∞. It follows from
Theorem 10.3 that L : K0 is a Galois extension and |G| = [L : K0]. Suppose
that M is a field with K0 ⊆ M ⊆ L. Then [L : M ] < [L : K0] < ∞. In view
of Proposition 10.5, the extension L : M is Galois. We therefore infer from
Theorem 10.4 that ϕγ(M) = M , whence γ is injective and ϕ is surjective. In
combination with our previous conclusion, we thus discern that ϕ and γ are
bijective maps and are inverses of each other. The desired conclusion follows.

Next we turn our attention to the claim (b). Let H ≤ G. Suppose first that
H ⊴ G, so that for all σ ∈ G, one has σHσ−1 = H. Observe that whenever g
fixes ϕ(H), then σgσ−1 fixes σ(ϕ(H)). Then we discern from part (a) that

γ(σ(ϕ(H))) = σ(γϕ(H))σ−1 = σHσ−1 = H.

Hence ϕ(H) = ϕ(γ(σ(ϕ(H)))) = σ(ϕ(H)), and so ϕ(H) is fixed by every σ ∈ G.
So every K0-embedding of ϕ(H) into L is an automorphism of ϕ(H). Note that
Theorem 10.2 shows that L : K0 is Galois, and hence, since L : K0 is a finite,
normal extension with intermediate field ϕ(H), it follows from Theorem 6.4
that ϕ(H) : K0 is normal, as desired.

Now suppose that ϕ(H) : K0 is normal, and consider an element σ ∈ G. It
follows from Theorem 6.4 that σ(ϕ(H)) = ϕ(H), whence

γϕ(H) = γ(σ(ϕ(H))) = σ(γϕ(H))σ−1 = σHσ−1.

We therefore deduce that σHσ−1 = γϕ(H) = H for every σ ∈ G, so that
H ⊴ G. This completes the proof of the claim (b).

Finally, we establish the claim (c). Suppose that H ⊴ G. Then it follows
from part (b) that ϕ(H) : K0 is normal. Consider an element σ ∈ G. We again
find that σ(ϕ(H)) = ϕ(H), so that σ|ϕ(H) is an automorphism of ϕ(H) that fixes
K0, and hence σ|ϕ(H) ∈ Gal(ϕ(H) : K0). The map ψ : G → Gal(ϕ(H) : K0)
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defined by taking ψ(σ) = σ|ϕ(H) is a homomorphism from G into the group
Gal(ϕ(H) : K0). Here we note that (στ)|ϕ(H) = σ|ϕ(H)τ |ϕ(H). The kernel of
this map is the set of elements mapped to the identity, and this is the set of
elements fixing ϕ(H). Thus ker(ψ) = γϕ(H) = H.

The surjectivity of the map ψ may be established as follows. Observe
first that, by the primitive element theorem, there exists γ ∈ L such that
L = (ϕ(H))(γ). Consider a homomorphism ρ ∈ Gal(ϕ(H) : K0), and note
that since mγ(ϕ(H)) divides mγ(K0), then ρ(mγ(ϕ(H))) divides ρ(mγ(K0)) =
mγ(K0). Since the latter polynomial has the root γ ∈ L, it splits over L, and
so ρ(mγ(ϕ(H))) also splits over L. Thus, the number of ways that we can
extend ρ to an automorphism σ : L → L with σ|ϕ(H) = ρ is, by Corollary 3.3,
equal to the number of distinct roots of ρ(mγ(ϕ(H))) that lie in L, namely
deg(mγ(ϕ(H))) ≥ 1. But ρ fixes K0, so σ ∈ G, and hence there exists σ ∈ G
with ψ(σ) = σ|ϕ(H) = ρ. Thus the homomorphism ψ maps G surjectively onto
Gal(ϕ(H) : K0). Finally, since H ⊴ G and ψ : G → Gal(ϕ(H) : K0) is a
surjective homomorphism, it follows from the First Isomorphism Theorem of
Group Theory that Gal(ϕ(H) : K0) ≃ G/ker(ψ) = G/H. This completes the
proof of the claim (c). □

Notice that Proposition 10.1 parts (a) and (b) show that inclusions are
preserved in reverse by the actions of ϕ and γ, so that the lattice of subgroups
and the lattice of intermediate subfields are in bijective correspondence. See
Fig. 3 below for an illustration of this correspondence of lattice structures.

Definition 33. When f ∈ K[t] and L : K is a splitting field extension for
f , we define the Galois group of the polynomial f over K to be GalK(f) =
Gal(L : K).

We now outline in brief the general strategy for determining the structure
of the Galois group of a polynomial. Suppose that f ∈ K[t] is an irreducible
polynomial of degree n which is separable over K, and let L : K be a splitting
field extension for f . We assume that K ⊆ L, and note that L : K is a Galois
extension. In order to determine the structure of GalK(f), we make use of
Proposition 6.5, which implies that for any g ∈ K[t] with g irreducible over K,
the group Gal(L : K) permutes the roots of g transitively. Let α1, . . . , αn ∈ L
be the roots of f . When σ : L → L is a K-homomorphism, then it follows
from Proposition 6.1 that σ ∈ Aut(L), and hence σ ∈ Gal(L : K). When
σ ∈ Gal(L : K), on the other hand, we know that σ(αiαj) = σ(αi)σ(αj)
(1 ≤ i ≤ j ≤ n). Also, by Proposition 6.5, we know that σ(αi) is another
root of f , and since σ is injective, we have σ(αi) = αν(i) (1 ≤ i ≤ n), where
ν is some element of Sn, the permutation group on {1, 2, . . . , n}. By checking
all relations involved in generating K(α1, . . . , αn), we can check whether a
candidate for a K-homomorphism of L is indeed a K-homomorphism of L (as
we demonstrate in the following example). Also, since we are assuming that
L : K is a Galois extension, we know that there are |Gal(L : K)| = [L : K]
of these K-homomorphisms of L. Once we have identified [L : K] such K-
homomorphisms, we know that we have found all of the elements of Gal(L : K).
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11.2. A worked example. We determine the group GalQ(f), where f =
t4 − 2t2 + 2. First, by Eisenstein’s Criterion using the prime 2, one confirms
that f is irreducible over Z, whence by Gauss’ Lemma, we see that f is also
irreducible over Q. Since char(Q) = 0, it follows that f is separable over Q.
Next, we find a splitting field extension for f over Q. We have

t4 − 2t2 + 2 = (t2 − 1)2 + 1.

Thus, writing i =
√
−1, we see that f(α) = 0 if and only if α2 − 1 = ±i,

whence α = ±
√
1± i. We put ξ =

√
1 + i and ξ′ =

√
1− i, and then the roots

of f are ±ξ and ±ξ′. It follows that, with L = Q(ξ, ξ′), the extension L : Q is
a splitting field extension for f .

We have shown that L : Q is a Galois extension, and hence |Gal(L : Q)| =
[L : Q], but we have yet to determine the latter degree. We know that
deg(mξ(Q)) = 4, so it follows from the tower law that 4 divides [L : Q].
To be more precise we must examine how ξ and ξ′ are related to one another.
Notice that ξξ′ =

√
2, and thus Q(ξ, ξ′) = Q(ξ,

√
2/ξ) = Q(ξ,

√
2). Also, since

m√
2(Q(ξ)) divides m√

2(Q) = t2 − 2, it follows that [L : Q(ξ)] ≤ 2. Thus,
again by the tower law, we find that |Gal(L : Q)| = [L : Q] is either 4 or 8.

In order to construct the elements of G = Gal(L : Q), recall that G acts
transitively on the roots of f , which are {±ξ,±ξ′}, and each element of G is
a Q-homomorphism that permutes the roots of f . In particular, when σ ∈ G,
we have σ(−ξ) = −σ(ξ) and σ(−ξ′) = −σ(ξ′), and so σ is determined by its
action on ξ and ξ′. It is useful also to note obvious subfields of L. Thus, since
ξξ′ =

√
2 and ξ2 = 1 + i, we find that

√
2, i and i

√
2 all lie in L, whence

Q(
√
2), Q(i) and Q(i

√
2) = Q(

√
−2) are all subfields of L. We consider all the

possibilities, as follows.

(i) for a, b ∈ {0, 1}, the homomorphisms defined by σab(ξ) = (−1)aξ and
σab(ξ

′) = (−1)bξ′. Then σab(
√
2) = (−1)a+b

√
2 and σab(i) = i, whence

σab(i
√
2) = (−1)a+bi

√
2.

(ii) for a, b ∈ {0, 1}, the homomorphisms defined by τab(ξ) = (−1)aξ′ and
τab(ξ

′) = (−1)bξ. Then τab(
√
2) = (−1)a+b

√
2 and τab(i) = −i, whence

τab(i
√
2) = (−1)a+b+1i

√
2.

We know that σ00 = id ∈ G. Also, since G acts transitively on the roots
of f and ξ is a root of f , we know that either σ10 or σ11 lies in G, and either
τ00 or τ01 lies in G, and either τ10 or τ11 lies in G. Likewise, since ξ′ is a root
of f , we know that either σ01 or σ11 lies in G, and either τ00 or τ10 lies in G,
and either τ01 or τ11 lies in G. We can also make use of the group structure
of Gal(L : Q). Thus we have τ 201 = σ11 = τ 210, τ

3
01 = τ10, and τ

3
10 = τ01. So if

|G| = 4, then either G = {σ00, σ11, τ01, τ10}, or, in the case that τ10 ̸∈ G, we
must have G = {σ00, σ11, τ00, τ11}.

Now we can examine fixed fields, noting that because L : Q is Galois, one
has ϕ(G) = Q. If G = {σ00, σ11, τ01, τ10}, then i

√
2 ∈ ϕ(G), yielding a con-

tradiction. If G = {σ00, σ11, τ00, τ11}, meanwhile, then
√
2 ∈ ϕ(G), again

yielding a contradiction. Hence |G| ̸= 4, and we must have |G| = 8. This
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implies, in particular, that [L : Q] = 8. We are also forced to conclude
that all of the maps σij, τij above are in fact Q-homomorphisms, whence
G = {σij, τij : i, j ∈ {0, 1}}. One easily checks that σ01, σ10, σ11, τ00, τ11 all
have order 2, and τ01 and τ11 each have order 4. Finally, one has

σ10 = τ 201σ01, σ11 = τ 201, τ00 = τ01σ01, and τ11 = τ 301σ01.

Put σ = σ01 and τ = τ01. Then
〈
τ
〉
is a subgroup of G of order 4 with

σ ̸∈
〈
τ
〉
. Since

〈
σ, τ
〉
is a subgroup of G with at least 5 elements, and the

order of a subgroup of G must divide |G| = 8, we see that
〈
σ, τ
〉
= G. One

easily checks that τσ = στ 3, and thus

G =
〈
σ, τ : σ2 = 1 = τ 4, τσ = στ 3

〉
,

which is the dihedral group D4.

We now analyse the subgroup structure of G. Since |G| = 8, each proper,
non-trivial subgroup of G has order 2 or 4. The subgroups of order 2 are
necessarily cyclic, and these are〈

σ
〉
,
〈
τ 2σ
〉
,
〈
τ 2
〉
,
〈
τσ
〉

and
〈
τ 3σ
〉
. (4)

The group G plainly has the cyclic subgroup ⟨τ⟩ = {1, τ, τ 2, τ 3}, of order 4.
Thus, the non-cyclic subgroups of G having order 4 cannot contain τ or τ 3.
One easily checks that τ lies in the subgroups〈

σ, τσ
〉
,
〈
σ, τ 3σ

〉
,
〈
τσ, τ 2σ

〉
,
〈
τ 2σ, τ 3σ

〉
,

whence all of these subgroups must be equal to G. Hence the remaining non-
cyclic subgroups of G with two generators are〈

σ, τ 2
〉
= {1, σ, τ 2, τ 2σ} =

〈
τ 2σ, τ 2

〉
=
〈
σ, τ 2σ

〉
and 〈

τσ, τ 2
〉
= {1, τσ, τ 2, τ 3σ} =

〈
τ 3σ, τ 2

〉
=
〈
τσ, τ 3σ

〉
.

From this, one sees that a subgroup of G with three distinct generators is
either G or one of the subgroups already listed.

Now we determine the fixed subfields of L corresponding to the proper,
nontrivial subgroups of G. Let M = ϕ(H), with H some subgroup of G. Then
it follows from the Fundamental Theorem of Galois Theory that H = γϕ(H) =
Gal(L : M). Since L : M is Galois, we have [L : M ] = |Gal(L : M)| = |H|,
and hence it follows from the tower law that [M : Q] = [L : Q]/|H|. In the
situation at hand, we therefore see that there are 3 intermediate fields M with
[M : Q] = 2, and 5 intermediate fields M with [M : Q] = 4.

We begin by finding the 3 intermediate fields M with [M : Q] = 2 fixed by
one of the subgroups

〈
τ
〉
,
〈
σ, τ 2

〉
and

〈
τσ, τ 2

〉
of order 4, and here we have

already identified three candidates for M , namely Q(
√
2), Q(i) and Q(i

√
2).

Notice that each of these fields is an extension of Q of degree 2, by examining
the minimal polynomials t2 − 2, t2 + 1 and t2 + 2 of the respective generating
elements

√
2, i and i

√
2 over Q. From our previous work, we see that Q(i

√
2) ⊆

ϕ(
〈
τ
〉
), and since

〈
τ
〉
has order 4, which implies that its fixed field has degree

2 over Q, we are forced to conclude that Q(i
√
2) = ϕ(

〈
τ
〉
). Similarly, we
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have Q(i) ⊆ ϕ(
〈
σ, τ 2

〉
), whence Q(i) = ϕ(

〈
σ, τ 2

〉
), and Q(

√
2) ⊆ ϕ(

〈
τσ, τ 2

〉
),

whence Q(
√
2) = ϕ(

〈
τσ, τ 2

〉
).

Next we find the 5 intermediate fields M with [M : Q] = 4 fixed by one of
the subgroups (4) of order 2, and here we have already three candidates for
M , namely Q(ξ), Q(ξ′) and Q(

√
2, i). Notice that the first two of these fields

is an extension of Q of degree 4, by examining the minimal polynomial f of
both ξ and ξ′ over Q. Here, we have Q(ξ) ̸= Q(ξ′), for otherwise L = Q(ξ),
which contradicts our earlier deduction [L : Q] = 8 > [Q(ξ) : Q]. Meanwhile,
since i ̸∈ Q(

√
2), it follows by considering the minimal polynomials t2 − 2 and

t2 + 1 of
√
2 over Q, and of i over Q(

√
2), that Q(

√
2, i) has degree 4 over

Q. From our previous work, we see that Q(ξ) ⊆ ϕ(
〈
σ
〉
), and since

〈
σ
〉
has

order 2, which implies that its fixed field has degree 4 over Q, we are forced
to conclude that Q(ξ) = ϕ(

〈
σ
〉
). Similarly, we have Q(ξ′) ⊆ ϕ(

〈
τ 2σ
〉
), whence

Q(ξ′) = ϕ(
〈
τ 2σ
〉
), and Q(

√
2, i) ⊆ ϕ(

〈
τ 2
〉
), whence Q(

√
2, i) = ϕ(

〈
τ 2
〉
).

G = ⟨σ, τ⟩

⟨σ, τ 2⟩ ⟨τ⟩ ⟨τσ, τ 2⟩

⟨σ⟩ ⟨τ 2σ⟩ ⟨τ 2⟩ ⟨τσ⟩ ⟨τ 3σ⟩

⟨1⟩

Q

Q(i) Q(i
√
2) Q(

√
2)

Q(ξ) Q(ξ′) Q(
√
2, i) Q(ξ + ξ′) Q(ξ − ξ′)

L

Fig. 3. Diagram of the subgroups of G = Gal(L : Q) and the corresponding
fixed fields, where L : Q is a splitting field extension for f = t4 − 2t2 + 2, and

in which ξ =
√
1 + i and ξ′ =

√
1− i.

It remains to consider the other two order subgroups of G of order 2, namely〈
τσ
〉
and

〈
τ 3σ
〉
. This requires more care, since a priori it is not obvious what

subfields these groups will fix. Note first that these subgroups are contained
in
〈
τσ, τ 2

〉
, and so their fixed fields contain Q(

√
2) = ϕ(

〈
τσ, τ 2

〉
). Next, let
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E = ϕ(
〈
τσ
〉
). Then L = E(ξ), and [L : E] = 2, since |

〈
τσ
〉
| = 2. But then

mξ(E) is a polynomial of degree 2 that is fixed by τσ, that divides f and, over
L[t], is divisible by t − ξ. Consequently, we deduce that mξ(E) is one of the
polynomials

f1 = (t− ξ)(t+ ξ) = t2 − ξ2 = t2 − (1 + i),

f2 = (t− ξ)(t− ξ′) = t2 − (ξ + ξ′)t+
√
2,

f3 = (t− ξ)(t+ ξ′) = t2 − (ξ − ξ′)t−
√
2.

We know already that τσ fixes
√
2. A further check reveals that τσ also fixes

ξ + ξ′, and so we must have mξ(E) = f2. Note also that (ξ + ξ′)2 = 2 + 2
√
2,

so
√
2 ∈ Q(ξ + ξ′) and hence f2 ∈ Q(ξ + ξ′)[t]. Thus mξ(Q(ξ + ξ′)) divides f2,

and hence [L : Q(ξ + ξ′)] ≤ deg f2 = 2. But then

2[E : Q(ξ + ξ′)] = [L : E][E : Q(ξ + ξ′)] = [L : Q(ξ + ξ′)] ≤ 2,

yielding the conclusion [E : Q(ξ + ξ′)] = 1. We have therefore shown that
Q(ξ+ ξ′) = E = ϕ(

〈
τσ
〉
). On noting that τ 3σ fixes ξ− ξ′, a virtually identical

argument shows that Q(ξ − ξ′) = ϕ(
〈
τ 3σ
〉
).

Keeping in mind the relations supplied by Proposition 10.1(a) and (b), we
obtain the correspondence of lattices of subgroups and intermediate subfields
exhibited in Fig. 3.

11.3. Non-examinable: consequences for composita and intersections.
We offer some relations between Galois groups corresponding to various com-
binations of intermediate fields.

Theorem 11.2. Let E : K and F : K be finite extensions with L a field
containing both E and F . Then one has the following:

(a) when E : K is Galois, then EF : F is Galois and

Gal(EF : F ) ≃ Gal(E : E ∩ F );
(b) when E : K and F : K are both Galois, then EF : K and E ∩ F : K

are both Galois, and

Gal(EF : E ∩ F ) ≃ Gal(E : E ∩ F )×Gal(F : E ∩ F ).

Notice that, if we so choose, we may apply this theorem with L = K.

Proof. We first establish the claim (a). Suppose that E : K is Galois. By
Theorems 6.7 and 7.8, the extension EF : F is Galois. Let σ ∈ Gal(EF : F ).
Then σ|E supplies a K-homomorphism from E into EF . For α ∈ E, we
know that σ(α) is a root of mα(K), and since E : K is Galois, we have
σ(α) ∈ E. Thus σ(E) ⊆ E, and so it follows from Theorem 3.4 that σ|E is an
automorphism of E. Further, for α ∈ E ∩ F , since σ is an F -homomorphism,
we see that σ(α) = α. The map ψ : Gal(EF : F ) → Gal(E : E ∩ F ) given
by σ 7→ σ|E is therefore a homomorphism. Moreover, one has σ ∈ kerψ if
and only if σ|E = idE. Since σ|F = idF , we have σ|E = idE if and only if
σ = σ|EF = idEF . Hence kerψ = {idEF}, meaning that ψ is injective. In order
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to show that ψ is surjective, let H = ψ(Gal(EF : F )), which is a subgroup of
Gal(E : E ∩ F ). By applying Theorem 11.1, we find that

FixE(H) = {α ∈ E : σ|E(α) = σ(α) = α for all σ ∈ Gal(EF : F )}
= {α ∈ E : α ∈ FixEF (Gal(EF : F )) = F}
= E ∩ F.

We therefore deduce from Theorem 11.1 that

ψ(Gal(EF : F )) = H = Gal(E : FixE(H)) = Gal(E : E ∩ F ),
so that ψ is surjective. From here, the First Isomorphism Theorem of Group
Theory shows that Gal(EF : F ) ≃ Gal(E : E ∩ F ).

Next we turn to the proof of the claim (b). Suppose that E : K and
F : K are both Galois. By Thorems 6.7 and 7.8, the extensions EF : K and
E∩F : K are also Galois. One can check that the map σ 7→ (σ|E, σ|F ) supplies
a homomorphism ω : Gal(EF : E ∩ F ) → Gal(E : E ∩ F ) × Gal(F : E ∩ F ).
We have kerω = {idEF}, for if σ ∈ Gal(EF : E ∩ F ) fixes E and F pointwise,
then σ fixes EF pointwise. But Gal(EF : F ) ⊆ Gal(EF : E ∩ F ), so by the
argument from part (a), we discern that the image of ω contains both

ω(Gal(EF : F )) = Gal(E : E ∩ F )× {idF}
and

ω(Gal(EF : E)) = {idE} ×Gal(E : E ∩ F ).
Since the image of ω is a subgroup of Gal(EF : K), we are forced to conclude
that

Gal(E : E ∩ F )×Gal(F : E ∩ F ) ⊆ ω(Gal(EF : E ∩ F )).
Thus ω is surjective, and hence also bijective, and this completes the proof of
the claim (b). □

12. Finite fields

The work of the previous section puts us in a powerful position to compre-
hensively describe field extensions of finite fields. Throughout this section, let
K be a finite field with char(K) = p > 0. Then p is a prime number, and for
some natural number m we have |K| = pm. We recall that K contains a sub-
field isomorphic to Z/pZ, called the prime subfield of K, which is generated as
an additive subgroup of K by the element 1 = 1K . Thus K is a field extension
of its prime subfield, with degree m. We also know that the multiplicative
group K× is cyclic.

Theorem 12.1. Let p be a prime, and let q = pn for some n ∈ N. Then:
(a) There exists a field Fq of order q, and this field is unique up to isomor-

phism.
(b) All elements of Fq satisfy the equation tq = t, and hence Fq : Fp is a

splitting field extension for tq − t.
(c) There is a unique copy of Fq inside any algebraically closed field con-

taining Fp.
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Proof. Put K = Fp, and let L : K be a splitting field extension for the poly-
nomial f = tq − t. Observe that if α ∈ L were a repeated root of f , then one
would have −1 = (Df)(α) = 0, which is impossible. Hence f is separable over
K and f has q distinct roots in L. Write R for the set of roots of f in L.
Let ϕ : L → L be the Frobenius map defined by ϕ(α) = αp. We recall from
Corollary 8.5 that ϕ ∈ Aut(L). Then for any α ∈ L, one has ϕn(α) = αp

n
.

Thus, the set of elements of L fixed by ϕn are precisely the roots of f , namely

R = {α ∈ L : ϕn(α) = α}.

So R is the subset of L that is fixed by the group
〈
ϕn
〉
. Since every element of

K ≃ Z/pZ is fixed by the map α 7→ αp, and hence also by the map α 7→ αp
n
, it

follows that
〈
ϕn
〉
≤ Gal(L : K). Hence R is a subfield of L with the property

that every element of R is a root of f . We therefore find that R : K is a
splitting field extension for f with R ⊆ L, whence R = L. In particular, the
field L has q elements.

We must still establish the uniqueness of L. Suppose then that M is a field
with |M | = q. Since q = pn, it follows that M has characteristic p. The group
M× has q − 1 elements, so every element of M× is a root of tq−1 − 1, and
so every element of M is a root of tq − t. Since the prime subfield of M is
isomorphic to Fp, we see that M : K is a field extension, and so M : K is a
splitting field extension for f . We therefore conclude from Theorem 5.4 that
M ≃ L. This completes the proof of the claims (a) and (b).

In order to prove the claim (c), note that any algebraically closed field
containing Fp has a unique subfield E that is a splitting field for tq − t, and
hence E ≃ Fq. □

We may now completely describe the Galois group associated with an ex-
tension of a finite field.

Theorem 12.2. Let p be a prime, and suppose that q = pn for some natural
number n. Then:

(a) the field extension Fq : Fp is Galois with Gal(Fq : Fp) ≃ Z/nZ;
(b) the field Fq contains a subfield of order pd if and only if d|n. When d|n,

moreover, there is a unique subfield of Fq of order pd.

Proof. We begin by establishing the claim (a). We have seen in Theorem
12.1(b) that Fq : Fp is a splitting field extension, and hence a normal extension.
Since Fq is algebraic over its prime subfield, the extension Fq : Fp is separable,
and thus Galois. Hence |Gal(Fq : Fp)| = [Fq : Fp] = n. But the Frobenius
mapping ϕ belongs to Gal(Fq : Fp). Since all elements of Fq are roots of tp

n − t,
we have ϕn = idFq . Were one to have ϕr = idFq for some r < n, then one would
have αp

r
= α for all α ∈ Fq, whence |Fq| ≤ pr, and yielding a contradiction.

Then |
〈
ϕ
〉
| = n = |Gal(Fq : Fp)|. Since

〈
ϕ
〉
≤ Gal(Fq : Fp), we are forced to

conclude that Gal(Fq : Fp) =
〈
ϕ
〉
≃ Z/nZ.

Claim (b) is established in problem 3 of Problem Sheet 13. □
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13. Solvability by radicals: polynomials of degree 2, 3 and 4

13.1. Finding roots of quadratic, cubic and quartic polynomials. We
are familiar with the fact that when K is a field with characteristic different
from 2, then quadratic equations can be solved by adjoining square-roots.
Suppose that f = at2 + bt + c ∈ K[t]. Then 4af = (2at + b)2 − (b2 − 4ac) is
solvable in K(

√
b2 − 4ac) with roots

−b±
√
b2 − 4ac

2a
.

With α1 a root of f and L = K(α1), we have f = a(t − α1)(t − α2), where
α2 = −α1 − b/a is necessarily an element of L. Hence L : K is a splitting field
extension for f . We have Gal(L : K) = {idL} if α1 ∈ K or if α1 = α2, so that
Gal(L : K) = {idL} when b2 − 4ac is a square in K. In the case that b2 − 4ac
is not a square in K, then Gal(L : K) = {idL, τ}, where τ(α1) = α2. This
discussion motivates a concept familiar to classical mathematicians.

Definition 34. Suppose that L : K is a field extension, and β ∈ L. We say
that β is radical over K when βn ∈ K for some n ∈ N (so β = α1/n for some
α ∈ K and some n ∈ N). We say that L : K is an extension by radicals when
there is a tower of field extensions L = Lr : Lr−1 : · · · : L0 = K such that
Li = Li−1(βi) with βi radical over Li−1 (1 ≤ i ≤ r). We say f ∈ K[t] is solvable
by radicals if there is a radical extension of K over which f splits.

We want to explore when a polynomial over a field K is solvable by radicals.
First, the quick and dirty approach.

Cubic polynomials (Fontano and of Cardano, circa 1535). Since we work
over a field K, it suffices to consider monic polynomials. We suppose that
char(K) ̸= 2, 3 and f = t3+a2t

2+a1t+a0 ∈ K[t]. First we complete the cube,
noting that

27f = (3t+ a2)
3 + 3(3a1 − a22)(3t+ a2) + (27a0 + 2a32 − 9a1a2)

= y3 + 3b1y + b0,

where y = 3t+a2, b1 = 3a1−a22 and b0 = 27a0+2a32−9a1a2. Thus f ∈ K[t] is
solvable by radicals if and only if y3 + b1y + b0 ∈ K[y] is solvable by radicals.
Note here that 27 ∈ K with 27 ̸= 0 since char(K) ̸= 3, and that f splits over
a field L if and only if y3 + 3b1y + b0 splits over L.

Next we derive the auxiliary equation. We seek to find a root of y3+3b1y+b0
of the shape u+ v, where both u and v are elements of a radical extension of
K. We therefore substitute y = u+ v, and obtain the equation

(u+ v)3 + 3b1(u+ v) + b0 = 0,

which can be rewritten

u3 + v3 + 3uv(u+ v) + 3b1(u+ v) + b0 = 0.

Consequently, if we can find u, v ∈ K having the property that u ̸= 0, uv = −b1
and u3+ v3 = −b0, then y = u+ v will be a root of the equation y3+3b1y+ b0.
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In order to confirm that such u and v exist, we proceed as follows. Assume
that u ̸= 0, and put v = −b1/u. Then we have u3 + v3 = −b0 if and only if

u3 − b31/u
3 + b0 = 0,

which is to say that

(u3)2 + b0(u
3)− b31 = 0. (5)

By applying our knowledge of quadratic equations, this has the solution

u3 = 1
2

(
−b0 ±

√
b20 + 4b31

)
,

and then v3 = −b0−u3. Thus, both u and v are given by taking cube roots of
elements of K1 = K(

√
b20 + 4b31), which is a radical extension of K, and hence

u and v are elements of a radical extension K2 of K. Then with these choices
for u and v, one root of f is

u+ v =
3

√
−b0 +

√
b20 + 4b31
2

+
3

√
−b0 −

√
b20 + 4b31
2

.

Over K2, we now see that y3 + b1y + b0 = (y − u− v)(y2 + c1y + c0), for some
c1, c0 ∈ K2. Using the quadratic equation y2 + c1y + c0, we may now find a
radical extension L of K2 over which y2 + c1y + c0, and hence also f , splits.

The above discussion presumes that u ̸= 0, where u3 = 1
2

(
−b0 ±

√
b20 + 4b31

)
.

If neither of the possible choices for the latter quantity is non-zero, then we
have b20 = b20+4b31 and b1 = 0 = b0. In this situation, one finds that y = 0 gives
a solution, and hence f = (t+ a2/3)

3 with root t = −a2/3. Then in any case,
one sees that f = t3 + a2t

2 + a1t+ a0 ∈ K[t] splits over a radical extension of
K when char(K) ̸= 2, 3.

Quartic polynomials (Cardano, circa 1545). Suppose that char(K) ̸= 2, 3
and f = t4 + a3t

3 + a2t
2 + a1t+ a0 ∈ K[t]. We first complete the fourth power

to obtain

256f = y4 + b2y
2 + b1y + b0,

where y = 4t + a3, and b2, b1, b0 ∈ K are given by polynomials in the ai. So
f ∈ K[t] is solvable by radicals if and only if g = y4 + b2y

2 + b1y+ b0 ∈ K[y] is
solvable by radicals. Moreover, a splitting field for f over K is also a splitting
field for g over K, and vice versa.

Next we derive the auxiliary equation. We seek elements r, β and C in a
radical extension of K having the property that the equation g = 0 takes the
shape (y2 + r)2 = C2(y − β)2, for then it suffices to solve the equation

y2 + r = C(y − β), (6)

which may evidently be solved in a radical extension of K(r, β, C). But if
y4 + b2y

2 + b1y + b0 = 0, then

(y2 + r)2 = y4 + 2ry2 + r2 = (2r − b2)y
2 − b1y + r2 − b0.
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The quadratic polynomial on the right hand side here has a double root if and
only if (−b1)2 = 4(2r − b2)(r

2 − b0), in which case this double root is

β =
b1

2(2r − b2)
. (7)

The auxiliary cubic equation may then be rewritten as

8r3 − 4b2r
2 − 8rb0 + 4b0b2 − b21 = 0,

an equation we know to be solvable in a radical extension of K by virtue of our
discussion on cubic equations. If possible, fix r to be one of the roots of the
cubic auxiliary equation with b2 ̸= 2r. Then, defining β via (7), we obtain the
equation (6) with C =

√
2r − b2, and this may be solved in a radical extension

of K(r, β, C) by using our knowledge of quadratic equations. Thus f possesses
a root in a radical extension K ′ of K. The remaining roots of f now satisfy a
cubic polynomial polynomial over K ′, and this splits in a radical extension of
K ′. Thus f splits over a radical extension of K.

If the only root of the auxiliary cubic equation satisfies b2 = 2r, then b1 = 0,
the cubic equation takes the shape (2r− b2)(4r

2 − 4b0) = 0 in which b22 = 4b0,
and b2 = b0 = 0 (for otherwise 2r = −b2 also supplies a root distinct from that
with b2 = 2r). In such circumstances, the equation g = 0 yields y = 0, and
hence f has the root −a3/4 ∈ K of multiplicity 4. In this case also, therefore,
we conclude that f splits over a radical extension of K.

14. Solvability and solubility

Our goal in this section is to provide a precise criterion for when a given
polynomial f ∈ K[t] admits a solution by radicals over K. We begin by
recalling a property of soluble groups.

Definition 35. A finite group G is soluble if there is a series of groups

{id} = G0 ≤ G1 ≤ . . . ≤ Gn = G,

with the property that Gi ⊴Gi+1 and Gi+1/Gi is abelian (0 ≤ i < n).

Observe that there is no loss of generality, in this definition, in assuming that
Gi+1/Gi is cyclic, for we can always refine the series of subgroups so that the
quotients are not merely abelian, but even cyclic. Indeed, on considering the
classification theorem of finite abelian groups, we may even assume that these
cyclic groups have prime power order. Many sources define soluble groups in
precisely such a manner, and this is equivalent to the definition that we have
given. Abelian groups are plainly soluble. Also, it is a fact (which one can
check as an exercise) that the smallest insoluble group is A5, with order 60.
[See Chapter 17.2 of the book by Garling for more on basic facts about soluble
groups].

Theorem 14.1. Let K be a field of characteristic 0. Then f ∈ K[t] is soluble
by radicals if and only if GalK(f) is soluble.
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The proof will proceed in several stages, and we concentrate on the forward
implication. We aim to show that if f ∈ K[t] is soluble by radicals, then its
splitting field extension L : K satisfies the property that L ⊆M for a field M
for which M : K is radical. We may then study GalK(f) inside Gal(M : K),
and thereby show that GalK(f) is soluble.

Lemma 14.2. Suppose char(K) = 0 and L : K is a radical extension. Then
there exists an extension N : L such that N : K is normal and radical.

Proof. One has L = K(α1, . . . , αn), where for 1 ≤ i ≤ n one has

αrii ∈ K(α1, . . . , αi−1).

We note for future reference here that there is no loss of generality in supposing
that for each i, the exponent ri is a prime number. Let N : L be a splitting
field extension for

n∏
i=1

mαi
(K).

Then N : L : K is a tower of extensions with N : K normal. Moreover, since
Gal(N : K) is transitive on the roots of each mαi,K , one has

N = K ({σ(αj) : σ ∈ Gal(N : K) and 1 ≤ j ≤ n}) .

But α
rj
j ∈ K(α1, . . . , αj−1) for each j, and hence

(σ(αj))
rj = σ(α

rj
j ) ∈ σ(K(α1, . . . , αj−1)) = K(σ(α1), . . . , σ(αj−1)).

Thus, it follows by induction that σ(αj) is radical over K for each j and
σ ∈ Gal(N : K), whence N : K is radical. □

Before the next lemma, we record a definition of use in a wider context.

Definition 36. The extension L : K is cyclic if L : K is a Galois extension
and Gal(L : K) is a cyclic group.

Lemma 14.3. Suppose that char(K) = 0 and let p be a prime number. Also,
let L : K be a splitting field extension for tp − 1. Then Gal(L : K) is cyclic,
and hence L : K is a cyclic extension.

Proof. We have L = K(ω), where ω is a primitive p-th root of 1. Let g be a
primitive root modulo p, and define σ ∈ Gal(L : K) to be the automorphism
taking ω to ωg. Note that Gal(L : K) is defined by its action on powers of
ω, and that an element τ ∈ Gal(L : K) maps ω to some other root of unity
ω1 = ωa, for some integer a with 0 ≤ a < p. Since a ≡ gr (mod p) for a
suitable integer r, we see that τ = σr. Thus we discern that Gal(L : K) = ⟨σ⟩,
and hence Gal(L : K) is cyclic. □

Lemma 14.4. Let char(K) = 0 and suppose that n is an integer such that
tn − 1 splits over K. Let L : K be a splitting field extension for tn − a, for
some a ∈ K. Then Gal(L : K) is abelian.
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Proof. Let α ∈ L be a root of tn − a, so L = K(α). If σ, τ ∈ Gal(L : K), then
σ(α) = ω1α and τ(α) = ω2α, for some ω1, ω2 ∈ K with ωn1 = ωn2 = 1. Then

στ(α) = ω2ω1α = ω1ω2α = τσ(α),

so that σ and τ commute. Thus we see that Gal(L : K) is indeed abelian. □

Theorem 14.5. Let char(K) = 0 and suppose that L : K is Galois. Suppose
that there is an extension M : L with the property that M : K is radical. Then
Gal(L : K) is soluble.

Proof. By virtue of Lemma 14.2, we may suppose that M : K is normal, and
hence Galois. So we need show only that Gal(M : K) is soluble, since any
subgroup of a soluble group is also soluble.

Write M = K(α1, . . . , αn) with α
ri
i ∈ K(α1, . . . , αi−1) and ri prime for each

i. We proceed by induction. If n = 1 and α1 ∈ K, then we are trivially done.
Suppose next that α1 ̸∈ K and that p is a prime for which αp1 = a ∈ K. Let
N1 : K be a splitting field extension for tp − a, so N1 = K(α1, ω), where ω is
a primitive p-th root of 1. Then we have a tower of extensions N1 : K(ω) : K,
where

N1 : K(ω) is Galois, with abelian Galois group, by Lemma 14.4,

and

K(ω) : K is Galois, with abelian Galois group, by Lemma 14.3.

Then the Fundamental Theorem of Galois Theory shows that

{id}⊴Gal(N1 : K(ω))⊴Gal(N1 : K)

with
Gal(N1 : K)/Gal(N1 : K(ω)) ∼= Gal(K(ω) : K).

Notice that the right hand side is an abelian group, and hence Gal(N1 : K)
is soluble. This completes the proof of the inductive hypothesis when n = 1.
On replacing K by N1 and M by N1(α2, . . . , αn), we may run this argument
again. Thus, we may proceed in like manner inductively to show that there is
an extensionN2 : N1 with the property thatN2 : N1 is radical and Gal(N2 : N1)
is soluble. Moreover, one has

Gal(N2 : K)/Gal(N2 : N1) ∼= Gal(N1 : K),

so that Gal(N2 : K) is soluble. This, as we remarked, is a consequence of basic
group theory, for if H ⊴ G, then G is soluble if and only if both H and G/H
are soluble.

Proceeding inductively, we finally obtain a Galois extension N : L with
N : K radical and Gal(N : K) soluble. Finally, one has

Gal(N : K)/Gal(N : L) ∼= Gal(L : K),

so that Gal(L : K) is soluble. This completes the proof of the theorem. □

Corollary 14.6. Suppose that char(K) = 0. Then GalK(f) is soluble when-
ever f ∈ K[t] is soluble by radicals.
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Proof. Let L : K be a splitting field extension for f , and suppose that f is
solvable by radicals. Then it follows that there is an extension by radicals
M : K with L ⊆ M . Then it follows from Theorem 14.5 that Gal(L : K) is
soluble. □

Corollary 14.7. There exist quintic polynomials in Q[t] with insoluble Galois
groups, such as f(t) = t5 − 4t+ 2, and which are not solvable by radicals.

Proof. The polynomial f is irreducible over Q, as a consequence of Eisenstein’s
theorem using the prime 2. Let L : Q be a splitting field extension for f , and
let α ∈ L be a root of f . Then [Q(α) : Q] = deg(f) = 5, and from the
tower law we find that 5 divides [L : Q]. Thus G = GalQ(f) is a subgroup
of S5 of order |G| = [L : Q] divisible by 5. In particular, since 5 is a prime
number, we perceive that G has an element of order 5. Observe next that since
f ′(x) = 5x4 − 4, so that f ′(x) = 0 for precisely 2 real values of x, and

f(−2) = −22, f(0) = 2, f(1) = −1, f(2) = 26,

then f has 3 real roots and 2 complex roots. Hence GalQ(f) contains a trans-
position fixing the real roots and interchanging the 2 complex roots by conju-
gation. Then since GalQ(f) is isomorphic to a subgroup of S5, and contains an
element of order 5 and a transposition, it follows that in fact GalQ(f) is iso-
morphic to the whole of S5 (the group of permutations on 5 symbols). But S5

contains the insoluble subgroup A5, and hence is itself insoluble. We therefore
conclude that GalQ(f) is insoluble, and hence that f(t) = 0 cannot be solved
by using radical extensions of Q. □

In order to obtain the corresponding conclusion of Theorem 14.1 in the
reverse direction, we begin with a lemma.

Lemma 14.8. Let char(K) = 0, and suppose that L : K is a cyclic extension
of degree n. Suppose also that K contains a primitive n-th root of 1. Then
there exists θ ∈ K having the property that tn − θ is irreducible over K, and
L : K is a splitting field for tn − θ. Further, if β is a root of tn − θ over L,
then L = K(β).

Proof. Let Gal(L : K) =
〈
σ
〉
. By the primitive element theorem, we have

L = K(α) for some α ∈ L not lying in a proper subfield of L. Let ω ∈ K be a
primitive n-th root of unity. We claim that for some integer r with 0 ≤ r < n,
one has

αr + ωσ(αr) + . . .+ ωn−1σn−1(αr) ̸= 0.

For if
αr + ωσ(αr) + . . .+ ωn−1σn−1(αr) = 0 (0 ≤ r < n),

then the Vandermonde determinant

det
(
σi(αj)

)
0≤i,j<n = det

(
σi(α)j

)
0≤i,j<n =

∏
0≤i<l<n

(σi(α)− σl(α))

vanishes, whence σi(α) = σl(α) for some 0 ≤ i < l < n. Put h = l − i. Then
1 ≤ h < n and σh fixes α, whence

〈
σh
〉
fixes α, and consequently α lies in a
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proper subfield of L. But L = K(α), so this yields a contradiction, and we
are forced to conclude that a value of r does indeed exist having the asserted
non-vanishing property.

Put γ = αr, and then put

β = γ + ωσ(γ) + . . .+ ωn−1σn−1(γ).

Then σ(β) = ω−1β, whence σ(βn) = σ(β)n = βn. It follows that βn is fixed
by
〈
σ
〉
, whence θ = βn ∈ K. Since σi (0 ≤ i < n) are distinct automorphisms

of K(β) which fix K, we have [K(β) : K] = |Gal(K(β) : K)| ≥ n, and hence
[K(β) : K] = n = [L : K]. Thus L = K(β). Moreover, one has mβ(K)|(tn− θ)
and [K(β) : K] = n = deg(mβ(K)), whence mβ(K) = tn − θ. It is plainly the
case that K(β) : K is a splitting field extension for tn − θ, and so the proof of
the lemma is complete. □

Theorem 14.9. Let char(K) = 0, and suppose that f ∈ K[t] \K. Then f is
solvable by radicals whenever GalK(f) is soluble.

Proof. Let d = |GalK(f)|, and let ϵ ∈ K be a primitive d-th root of 1. We put
M = K(ϵ), and let N : M and L : K be respective splitting field extensions
for f with L ⊆ N . On noting that N : M is Galois, one can check that
GalM(f) = Gal(N :M) is isomorphic to a subgroup of GalK(f) = Gal(L : K).
Consequently, we see that G = GalM(f) is soluble. Thus there exists a series

{id} = Gr ⊴Gr−1 ⊴ . . .⊴G0 = G,

with the property that Gj−1/Gj is abelian for 1 ≤ j ≤ r. A moment of
thought reveals that we may even refine this series so that each quotient is
even cyclic. We next apply the Fundamental Theorem of Galois Theory. Let
Mj = FixN(Gj) for each j. Then N = Mr : Mr−1 : . . . : M0 = M is a
tower of extensions with Gal(Mj : Mj−1) ∼= Gj−1/Gj, so that Mj : Mj−1 is a
cyclic extension for each j. Also, one has [Mj : Mj−1] = |Gj−1/Gj|, so that
ej = [Mj : Mj−1] divides d. Since ϵ is a primitive d-th root of unity lying
in M and ej|d, it follows that Mj−1 contains a primitive ej-root of unity. We
therefore deduce from the previous lemma that there exists an element βj ∈Mj

radical over Mj−1 with the property that Mj =Mj−1(βj). Hence N :M is an
extension by radicals, whence N : K is also an extension by radicals. Since f
splits over N , it follows that f is solvable by radicals. □
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