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1. [3+3+3+3+3+3=18 points] Decide which of the following statements are necessarily true,
and which may be false. Mark those which are true with “T”, and those which may be
false with “F”.

a. There is a field isomorphism ϕ : Q(
√
−5)→ Q(

√
5).

Solution: False (if true, then ϕ(
√
−5)2 = ϕ(−5) = −5, yielding a contradiction, since

there exists no element ξ of Q(
√

5) for which ξ2 = −5 < 0).

b. There is a homomorphism of finite fields ψ : F3 → F37.

Solution: False (if true, then since ψ(1) = 1, we would have 0 = ψ(1 + 1 + 1) = ψ(1) +
ψ(1) + ψ(1) = 3 ∈ F37, leading to a contradiction).

c. If L : K is a field extension, and α and β are distinct elements of L having the same
minimal polynomial over K, then K(α) and K(β) are isomorphic fields.

Solution: True (this is an immediate consequence of Theorem 3.2 from the course).

d. It is not possible to construct, using compass and straightedge in the usual way, a length
whose 14th power is twice a given length.

Solution: True (by Eisenstein’s criterion, the polynomial t14−2 is irreducible over Q, and
thus the element 21/14 has minimal polynomial t14− 2. Hence [Q(21/14) : Q] = 14, which is
not a power of 2, and so 21/14 is not constructible using compass and straightedge).

e. The polynomial x36 + x35 + . . .+ x+ 1 is irreducible over Q.

Solution: True (it follows from Q1(b) of Homework 3 that xp−1 + . . .+x+ 1 is irreducible
for any prime p, and 37 is prime).

f. If K is a field and α is an element of an extension field L of K, then every element of
K(α) can be expressed as a polynomial in α with coefficients in K.

Solution: False (it is possible that α is transcendental over K, and then 1/α is not a
polynomial in α with coefficients in K).

2. [3+3+3+3=12 points]

(a) For j = 1 and 2, let Lj : Kj be a field extension relative to the embedding ϕj : Kj → Lj.
Suppose that σ : K1 → K2 and τ : L1 → L2 are isomorphisms. Define what is meant by
the statement that τ extends σ.

Solution: The isomorphism τ extends σ if τ ◦ ϕ1 = ϕ2 ◦ σ.

(b) Let L : M : K be a tower of field extensions with K ⊆ M ⊆ L. Define what is meant
by the statement that σ : M → L is a K-homomorphism.

Solution: The mapping σ : M → L is a K-homomorphism if σ leaves K pointwise fixed,
so that, for all α ∈ K, one has σ(α) = α.

(c) Suppose that L : K is a field extension. Define what is meant by the degree of L : K.

Solution: The degree of L : K is the dimension of L as a vector space over K.

(d) Suppose that L : K is a field extension with K ⊆ L, and α ∈ L is algebraic over K.
Define what is meant by the minimal polynomial of α over K.

Solution: The minimal polynomial of α over K is the unique monic polynomial mα(K)
having the property that ker(Eα) = (mα(K)), where Eα : K[t]→ L denotes the evaluation
map defined by putting Eα(f) = f(α).

Continued...
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3. [15 points] Let L : K be a field extension. Suppose that α ∈ L is algebraic over K and
β ∈ L is transcendental over K. Suppose also that α 6∈ K. Show that K(α, β) : K is not
a simple field extension.

Solution: Suppose that K(α, β) = K(γ) for some γ ∈ L. Since β ∈ K(γ) is transcendental
over K, the field extension K(γ) : K is not algebraic, and hence γ is transcendental over
K. Since α ∈ K(γ), we have α = f(γ)/g(γ) for some f, g ∈ K[t] with g 6= 0. Thus γ is
a root of h = αg − f ∈ K(α)[t]. Since α /∈ K and g 6= 0, the polynomial h cannot be
the zero polynomial, and therefore γ is algebraic over K(α). But then, since α is algebraic
over K, this implies that [K(γ) : K] = [K(γ) : K(α)][K(α) : K] < ∞, contradicting the
transcendence of γ. So K(α, β) : K cannot be a simple extension.

4. [8+8+8=24 points] Let θ denote the real number
√

3 + 3
√

6, and write L = Q(θ).

(a) Calculate the minimal polynomial of θ over Q, and hence determine the degree of the
field extension L : Q.

Solution: Write θ =
√

3 + 3
√

6. Then θ2 − 3 = 3
√

6, and hence (θ2 − 3)3 = 6. On putting
f(x) = (x2−3)3−6 = x6−9x4+27x2−33, we see that f(θ) = 0, and thus it follows that the
minimal polynomial mθ(Q) of θ over Q divides f . But by applying Eisenstein’s criterion
(and Gauss’ Lemma) using the prime 3, we see that f is irreducible: the lead coefficient of
f is not divisible by 3, all other coefficients are divisible by 3, and the constant coefficient
−33 is divisible by 3 but not by 32. Hence f is the minimal polynomial of θ over Q. The

degree of the field extension Q(
√

3 + 3
√

6) : Q is therefore equal to deg f = 6.

(b) Let f ∈ Q[t] be a monic polynomial of degree 4. Suppose that α ∈ L satisfies the
property that f(α) = 0. Is it possible that f is irreducible over Q? Justify your answer.

Solution: Suppose that f is irreducible with leading coefficient c ∈ Q \ {0}. Then the
irreducible polynomial of α over Q is c−1f and has degree 4, whence [Q(α) : Q] = 4. But
Q(α) is a subfield of L, so by the Tower Law we have

6 = [L : Q] = [L : Q(α)][Q(α) : Q] = 4[L : Q(α)],

so that 4 divides 6, yielding a contradiction. Hence f cannot be irreducible over Q.

(c) Suppose that β and γ are elements in C having the property that both β + γ and βγ
are algebraic over Q. Prove that β and γ are both algebraic over Q.

Solution: Define the algebraic numbers λ = β+γ and µ = βγ, and observe that (β−γ)2 =
λ2 − 4µ must then be algebraic over Q. But then ν = β − γ = ±

√
λ2 − 4µ is algebraic

over Q, and hence also β = 1
2
(λ+ ν) and γ = 1

2
(λ− ν) must be algebraic over Q.

5. [6+6+5=17 points] Let L : Q be an algebraic extension with Q ⊆ L, and consider a
homomorphism of fields ϕ : L→ L.

(a) By considering ϕ(Z), or otherwise, show that ϕ is a Q-homomorphism.

Solution: Since ϕ(1) = 1 (and ϕ is a homomorphism), one has ϕ(n) = ϕ(1 + . . . + 1) =
ϕ(1) + . . . + ϕ(1) = n for each n ∈ N. Thus, the homomorphism properties of ϕ ensure
that ϕ(0) = 0, ϕ(−n) = −n for n ∈ N, and ϕ(a/b) = ϕ(a)/ϕ(b) = a/b for each a ∈ Z and
b ∈ N. Thus ϕ fixes Q pointwise, and consequently ϕ is a Q-homomorphism.

(b) Suppose that α ∈ L. Show that the minimal polynomial of α over Q has ϕn(α) as a
root, for each non-negative integer n, where ϕn denotes the n-fold composition of ϕ.

Continued...
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Solution: Since ϕ is a Q-homomorphism of Q, we see that ϕ(mα(Q)) = mα(Q). Moreover,
writing f = mα(Q), we have 0 = ϕ(0) = ϕ(f(α)) = f(ϕ(α)), so that ϕ(α) is a root of f
whenever α is a root of f . By iterating this argument, it follows that ϕn(α) is a root of f
for all non-negative integers n.

(c) Suppose that α ∈ L. Show that there is a positive integer d with the property that
ϕd(α) = α. Moreover, putting β = α+ϕ(α)+ . . .+ϕd−1(α), with d taken to be the smallest
such non-negative integer, show that ϕ is a Q(β)-homomorphism of L.

Solution: We have that for each non-negative integer n, the element ϕn(α) of L is a root
of mα(Q). But the degree of the latter polynomial is a positive integer, say m. Thus,
when n ≥ m, it follows from the pigeon-hole principle that there exist integers i and j with
0 ≤ i < j ≤ n for which ϕi(α) = ϕj(α). But ϕ is a homomorphism of fields, and hence
injective, so that ϕj−i(α) = α. Putting d = j − i, we consequently find that d is a positive
integer with ϕd(α) = α.

Now let d be the smallest positive integer with the property that ϕd(α) = α, and observe
that then ϕ(β) = ϕ(α) + ϕ2(α) + . . .+ ϕd(α) = ϕ(α) + ϕ2(α) + . . .+ ϕd−1(α) + α = β. So
β, and hence also Q(β), is fixed by ϕ, whence ϕ is a Q(β)-homomorphism of L.

6. [7+7=14 points] With t an indeterminate, let f ∈ Z[t] be a polynomial of degree n ≥ 1,
and put K = Q(f).

(a) Find a polynomial F ∈ K[X] satisying the property that F (t) = 0, and hence deduce
that the field extension Q(t) : K is algebraic of degree at most n.

Solution: Put F (X) = f(X)−f(t) ∈ K[X]. Then we have F (t) = f(t)−f(t) = 0, so that
mt(K) divides F (X). But K = Q(f) ⊆ Q(t), so [Q(t) : K] = deg(mt(K)) ≤ deg(F ) =
deg(f) = n, and we conclude that Q(t) : K is an algebraic extension of degree at most n.

(b) Let g ∈ Z[t] be a polynomial distinct from f . By considering mg(K), or otherwise,
show that there exists a non-zero polynomial H(X, Y ) ∈ Z[X, Y ] with the property that
H(f(t), g(t)) = 0.

Solution: We have g ∈ Q(t), where Q(t) : K is an algebraic extension. Let h = mg(K)
be the minimal polynomial of g over K. Then for some positive integer m, we have
h(X) = h0 + h1X + . . . + hmX

m, where each hi ∈ K is a quotient of polynomials in f
with coefficients from Q. Note that h(g) = 0. Multiply h(X) through by the product of
all denominators of the hi to obtain h∗(X) ∈ (Q[f ])(X) for which h∗(g) = 0. The latter
relation is equivalent to a polynomial equation H∗(f, g) = 0 with H∗ ∈ Q[X, Y ]. Finally,
multiply through by the product of the denominators of the rational coefficients from Q in
H∗ to give a non-zero polynomial H ∈ Z[X, Y ] for which H(f, g) = 0.

End of examination.
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