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1. [3+3+3+3+3+3=18 points] Decide which of the following statements are necessarily true,
and which may be false. Mark those which are true with “T”, and those which may be
false with “F”.

a. Let f ∈ Z[t] be a polynomial, every root of which has multiplicity 2024. Then f is not
separable over Q.

Solution: False – consider, for example, the polynomial (t−1)2024, each irreducible factor
of which is linear and hence separable over Q.

b. If L : K is an algebraic extension of fields with K ⊆ L, then the algebraic closure L of
L is isomorphic to the algebraic closure K of K.

Solution: True – we have that K and L are both algebraic closures of K, and so Propo-
sition 4.9 shows that L is isomorphic to K.

c. Every algebraic extension of Q is separable.

Solution: True – this is a result from class (and holds more generally for every field K
of characteristic 0).

d. Suppose that K and L are fields with K ⊆ L, and L is algebraically closed. Then the
field extension L : K is normal.

Solution: False – consider, for example Q ⊆ C. The extension C : Q is not normal,
because this extension is not algebraic.

e. Suppose that L : M and M : K are field extensions with L : K normal. Then L : M is
a normal field extension.

Solution: True – this is a result from class (Proposition 6.3).

f. Let f ∈ Z[x] be a polynomial having prime degree p, and let θ be any root of f in a
splitting field extension for f over Q. Then [Q(θ) : Q] = p.

Solution: False – consider f(x) = xp, so that θ = 0 and [Q(θ) : Q] = [Q : Q] = 1.

2. [3+3+3+3=12 points]

(a) Define what it means for a field extension L : K to be a splitting field extension.

Solution: Suppose that M : K is a field extension relative to the embedding φ : K → M ,
and S ⊆ K[t] \ K has the property that every f ∈ S splits over M . Let L be a field
with φ(K) ⊆ L ⊆ M . Then L : K is a splitting field extension for S if L is the smallest
subfield of M containing φ(K) over which every polynomial f ∈ S splits. [Full credit if
you assumed that K ⊆ M , and worked with a single polynomial instead of a set.]

(b) Define what it means for a field extension L : K to be normal.

Solution: The extension L : K is normal if it is algebraic, and every irreducible polynomial
f ∈ K[t] either splits over L or has no root in L.

(c) Let L : K be a field extension. Define what it means for an element α ∈ L to be
separable over K.

Solution: An element α ∈ L is separable over K when α is algebraic over K and its
minimal polynomial mα(K) is separable (meaning that it has no multiple roots in K).

Continued...
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(d) Define what it means for a field extension L : K to be separable.

Solution: An algebraic extension L : K is separable if every α ∈ L is separable over K.

3. [8+8+8=24 points] This question concerns the polynomial f(t) = t4 − (t+ 1)2 ∈ Q[t].

(a) Find a splitting field extension L : Q for f , justifying your answer.

Solution: Working over Q, one finds that f(t) = t4 − (t + 1)2 = (t2 − t − 1)(t2 + t + 1),
and hence f(t) = (t− 1

2
(1 +

√
5))(t− 1

2
(1−

√
5))(t+ 1

2
(1 +

√
−3)(t+ 1

2
(1−

√
−3)). Thus,

on taking L = Q(
√
−3,

√
5), we find that L : Q is a splitting field extension for f .

(b) Determine the degree of your splitting field extension L : Q, justifying your answer.

Solution: We have [Q(
√
5) : Q] = 2, since the minimal polynomial for

√
5 over Q is

t2 − 5. The minimal polynomial for
√
−3 over Q(

√
5) divides t2 + 3. Since

√
−3 ̸∈ R and

Q(
√
5) ⊂ R, one sees that t2+3 has no root in Q(

√
5), and hence is irreducible over Q(

√
5).

Thus [L : Q(
√
5)] = 2, and so [L : Q] = [L : Q(

√
5)][Q(

√
5) : Q] = 4, by the tower law.

(c) Determine the subgroup of S4 to which Gal(L : Q) is isomorphic.

Solution: The group G = Gal(L : Q) can be identified by extension of Q-homorphisms,
first the inclusion map Q → L to a Q-homomorphism Q(

√
5) → L, and then to a Q-

homomorphism L = Q(
√
5,
√
−3) → L. The first extension is defined by an action per-

muting the roots
√
5 and −

√
5 of the irreducible polynomial t2 − 5 defining the extension

Q(
√
5) : Q. The second is defined by an action permuting the roots

√
−3 and −

√
−3 of

the irreducible polynomial t2 + 3 defining the extension L : Q(
√
5). Thus we see that G is

generated by permutations σ, τ and στ = τσ on the roots ±
√
5 and ±

√
−3 of the poly-

nomial f , where these maps fix Q pointwise, and σ = (
√
5,−

√
5) and τ = (

√
−3,−

√
−3).

Thus στ = τσ = (
√
5,−

√
5)(

√
−3,−

√
−3), and G ∼= {id, (1 2), (3 4), (1 2)(3 4)} ≤ S4.

4. [14 points] Suppose that L : K is a splitting field extension for the polynomial f ∈ K[t]\K.
Prove that [L : K] divides (deg f)!.

Solution: We proceed by induction on n = deg(f), noting that the case n = 1 is immedi-
ate. Now, when n > 1, we split the argument according to whether f is reducible or not
over K. If f is irreducible, let α ∈ L be any root of f . Then f factors as (t−α)g for some
other polynomial g ∈ K(α)[t] of degree n− 1. Moreover, we have that L is a splitting field
for g over K(α). By induction, we therefore see that [L : K(α)] divides (n − 1)!. Since
[K(α) : K] = n, the Tower Law shows that [L : K] divides n · (n− 1)! = n!.

On the other hand, if f = gh is reducible, let M be the subfield of L generated by K and
the roots of g. Then M is a splitting field for g over K and L is a splitting field for h over
M . By induction, we have that [M : K] divides r! and [L : M ] divides (n − r)!, where
r = deg(g). Hence [L : K] = [L : M ][M : K] divides r!(n − r)!, which in turn divides n!
(with quotient equal to the binomial coefficient

(
n
r

)
).

We have confirmed the inductive step in both cases, and the desired conclusion follows.

5. [7+7=14 points] (a) Suppose that M is an algebraically closed field. Show that all polyno-
mials in M [t] are separable.

Continued...
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Solution: Suppose that f ∈ M [t] is irreducible and deg(f) > 1. Then f is non-zero
and non-constant and has a root α ∈ M . Define g ∈ M [t] by means of the relation
f = (t − α)g. Then g has degree deg(f) − 1 ≥ 1, and thus f is not irreducible over M [t],
leading to a contradiction. Thus, every irreducible polynomial in M [t] has degree 1. Such
a polynomial cannot have multiple roots, and so must be separable. Every polynomial
in K[X] is therefore a product of separable polynomials, and must consequently itself be
separable.

(b) Suppose that p is a prime number and t is an indeterminate, and let L = Fp(t), where
Fp denotes the algebraic closure of Fp. Are all polynomials in L[X] separable? Justify your
answer.

Solution: No, not all polynomials in L[X] separable. Consider, for example, the polyno-
mial f = Xp − t ∈ L[X], and let α ∈ L be a root of f . Thus, we have αp = t. We show
first that f is irreducible over L. Since t is irreducible in Fp[t], it follows from Eisenstein’s
criterion via Gauss’s Lemma that f is irreducible over Fp(t) = L. Finally, to see that
f is not separable over L, we use the fact that char(K) = p and p divides the binomial
coefficients

(
p
k

)
for 1 ≤ k < p. Hence (X−α)p = Xp− t. Thus α is the only root of f , even

though f is irreducible over L with deg f = p > 1, and so f is not separable.

6. [8+8=16 points] Throughout, let f denote the polynomial t5 − 9t − 3 ∈ Q[t], let L be a
splitting field for f over Q, and let M be a field with Q ⊊ M ⊊ L (that is, a field strictly
intermediate between Q and L).

(a) Show that, for any σ ∈ Gal(L : Q), and for any α ∈ M , the polynomial σ(mα(Q)) is
monic and irreducible over Q. Here mα(Q) denotes the minimal polynomial of α over Q.

Solution: Suppose that α ∈ M . Then mα(Q) is monic and irreducible over Q. Since σ
is a homomorphism, we know that σ(1) = 1. Thus σ(mα(Q)) is monic. Also, if σ(mα(Q))
has a proper factorisation g1g2, say, then σ−1(g1) · σ−1(g2) gives a factorisation of mα(Q)
over Q, contradicting the irreducibility of mα(Q). Thus σ(mα(Q)) is indeed irreducible.

(b) Suppose that M : Q is normal and that f factors as a product of monic irreducibles
f1, . . . , fr (of positive degree) over M [t]. Show that deg(fi) = deg(f1) for each i.

Solution: Let α ∈ L be a root of f1 and β ∈ L be a root of fi. Since f1 and fi are monic and
irreducible over M [t], we have f1 = mα(M) and fi = mβ(M). Also, since f is irreducible
over Q, there is some σ ∈ Gal(L : Q) with σ(α) = β. We have 0 = σ(f1(α)) = σ(f1)(β).
Since M : K is normal, it follows from Theorem 6.4 that σ(M) ⊆ M , so that σ(f1) ∈ M [t].
Then σ(f1) is a monic polynomial divisible bymβ(M) = fi. So deg(f1) ≥ deg(fi). Applying
this argument with σ−1 in place of σ, we see that deg(fi) ≥ deg(f1). Consequently, we
have deg(fi) = deg(f1) for all i.

(c) Show that if M : Q is normal, then f remains irreducible over M .

Solution: Observe that deg(f) = 5, and so the proposed factorisation implies that
r deg(f1) = 5, whence deg(fi) = 1 for all i, or deg(f1) = 5 and r = 1. In the former
case, the field M is equal to the splitting field L of f over Q, contradicting that M is a
proper intermediate field. In the latter case, we see that f remains irreducible over M .

End of examination.
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