PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY – SOLUTIONS MA 45401-H01

28th March 2024 75 minutes

This paper contains SIX questions. All SIX answers will be used for assessment. Calculators, textbooks, notes and cribsheets are **not** permitted in this examination.

Do not turn over until instructed.

Cont...

1. [3+3+3+3+3=18 points] Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which may be false with "F".

a. Let $f \in \mathbb{Z}[t]$ be a polynomial, every root of which has multiplicity 2024. Then f is not separable over \mathbb{Q} .

Solution: False – consider, for example, the polynomial $(t-1)^{2024}$, each irreducible factor of which is linear and hence separable over \mathbb{Q} .

b. If L: K is an algebraic extension of fields with $K \subseteq L$, then the algebraic closure \overline{L} of L is isomorphic to the algebraic closure \overline{K} of K.

Solution: True – we have that \overline{K} and \overline{L} are both algebraic closures of K, and so Proposition 4.9 shows that \overline{L} is isomorphic to \overline{K} .

c. Every algebraic extension of \mathbb{Q} is separable.

Solution: True – this is a result from class (and holds more generally for every field K of characteristic 0).

d. Suppose that K and L are fields with $K \subseteq L$, and L is algebraically closed. Then the field extension L: K is normal.

Solution: False – consider, for example $\mathbb{Q} \subseteq \mathbb{C}$. The extension $\mathbb{C} : \mathbb{Q}$ is not normal, because this extension is not algebraic.

e. Suppose that L: M and M: K are field extensions with L: K normal. Then L: M is a normal field extension.

Solution: True – this is a result from class (Proposition 6.3).

f. Let $f \in \mathbb{Z}[x]$ be a polynomial having prime degree p, and let θ be any root of f in a splitting field extension for f over \mathbb{Q} . Then $[\mathbb{Q}(\theta) : \mathbb{Q}] = p$.

Solution: False – consider $f(x) = x^p$, so that $\theta = 0$ and $[\mathbb{Q}(\theta) : \mathbb{Q}] = [\mathbb{Q} : \mathbb{Q}] = 1$.

2. [3+3+3+3=12 points]

(a) Define what it means for a field extension L: K to be a splitting field extension.

Solution: Suppose that M : K is a field extension relative to the embedding $\varphi : K \to M$, and $S \subseteq K[t] \setminus K$ has the property that every $f \in S$ splits over M. Let L be a field with $\varphi(K) \subseteq L \subseteq M$. Then L : K is a splitting field extension for S if L is the smallest subfield of M containing $\varphi(K)$ over which every polynomial $f \in S$ splits. [Full credit if you assumed that $K \subseteq M$, and worked with a single polynomial instead of a set.]

(b) Define what it means for a field extension L: K to be normal.

Solution: The extension L : K is *normal* if it is algebraic, and every irreducible polynomial $f \in K[t]$ either splits over L or has no root in L.

(c) Let L: K be a field extension. Define what it means for an element $\alpha \in L$ to be separable over K.

Solution: An element $\alpha \in L$ is *separable* over K when α is algebraic over K and its minimal polynomial $m_{\alpha}(K)$ is separable (meaning that it has no multiple roots in \overline{K}).

Continued...

Cont...

(d) Define what it means for a field extension L: K to be separable.

Solution: An algebraic extension L: K is *separable* if every $\alpha \in L$ is separable over K.

3. [8+8+8=24 points] This question concerns the polynomial $f(t) = t^4 - (t+1)^2 \in \mathbb{Q}[t]$.

(a) Find a splitting field extension $L : \mathbb{Q}$ for f, justifying your answer.

Solution: Working over $\overline{\mathbb{Q}}$, one finds that $f(t) = t^4 - (t+1)^2 = (t^2 - t - 1)(t^2 + t + 1)$, and hence $f(t) = (t - \frac{1}{2}(1 + \sqrt{5}))(t - \frac{1}{2}(1 - \sqrt{5}))(t + \frac{1}{2}(1 + \sqrt{-3})(t + \frac{1}{2}(1 - \sqrt{-3})))$. Thus, on taking $L = \mathbb{Q}(\sqrt{-3}, \sqrt{5})$, we find that $L : \mathbb{Q}$ is a splitting field extension for f.

(b) Determine the degree of your splitting field extension $L : \mathbb{Q}$, justifying your answer.

Solution: We have $[\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2$, since the minimal polynomial for $\sqrt{5}$ over \mathbb{Q} is $t^2 - 5$. The minimal polynomial for $\sqrt{-3}$ over $\mathbb{Q}(\sqrt{5})$ divides $t^2 + 3$. Since $\sqrt{-3} \notin \mathbb{R}$ and $\mathbb{Q}(\sqrt{5}) \subset \mathbb{R}$, one sees that $t^2 + 3$ has no root in $\mathbb{Q}(\sqrt{5})$, and hence is irreducible over $\mathbb{Q}(\sqrt{5})$. Thus $[L:\mathbb{Q}(\sqrt{5})] = 2$, and so $[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt{5})][\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 4$, by the tower law.

(c) Determine the subgroup of S_4 to which $\operatorname{Gal}(L:\mathbb{Q})$ is isomorphic.

Solution: The group $G = \operatorname{Gal}(L : \mathbb{Q})$ can be identified by extension of \mathbb{Q} -homorphisms, first the inclusion map $\mathbb{Q} \to L$ to a \mathbb{Q} -homomorphism $\mathbb{Q}(\sqrt{5}) \to L$, and then to a \mathbb{Q} -homomorphism $L = \mathbb{Q}(\sqrt{5}, \sqrt{-3}) \to L$. The first extension is defined by an action permuting the roots $\sqrt{5}$ and $-\sqrt{5}$ of the irreducible polynomial $t^2 - 5$ defining the extension $\mathbb{Q}(\sqrt{5}) : \mathbb{Q}$. The second is defined by an action permuting the roots $\sqrt{-3}$ and $-\sqrt{-3}$ of the irreducible polynomial $t^2 + 3$ defining the extension $L : \mathbb{Q}(\sqrt{5})$. Thus we see that G is generated by permutations σ , τ and $\sigma\tau = \tau\sigma$ on the roots $\pm\sqrt{5}$ and $\pm\sqrt{-3}$ of the polynomial f, where these maps fix \mathbb{Q} pointwise, and $\sigma = (\sqrt{5}, -\sqrt{5})$ and $\tau = (\sqrt{-3}, -\sqrt{-3})$. Thus $\sigma\tau = \tau\sigma = (\sqrt{5}, -\sqrt{5})(\sqrt{-3}, -\sqrt{-3})$, and $G \cong \{\operatorname{id}, (1 \ 2), (3 \ 4), (1 \ 2)(3 \ 4)\} \le S_4$.

4. [14 points] Suppose that L: K is a splitting field extension for the polynomial $f \in K[t] \setminus K$. Prove that [L:K] divides $(\deg f)!$.

Solution: We proceed by induction on $n = \deg(f)$, noting that the case n = 1 is immediate. Now, when n > 1, we split the argument according to whether f is reducible or not over K. If f is irreducible, let $\alpha \in L$ be any root of f. Then f factors as $(t - \alpha)g$ for some other polynomial $g \in K(\alpha)[t]$ of degree n - 1. Moreover, we have that L is a splitting field for g over $K(\alpha)$. By induction, we therefore see that $[L : K(\alpha)]$ divides (n - 1)!. Since $[K(\alpha) : K] = n$, the Tower Law shows that [L : K] divides $n \cdot (n - 1)! = n!$.

On the other hand, if f = gh is reducible, let M be the subfield of L generated by K and the roots of g. Then M is a splitting field for g over K and L is a splitting field for h over M. By induction, we have that [M : K] divides r! and [L : M] divides (n - r)!, where $r = \deg(g)$. Hence [L : K] = [L : M][M : K] divides r!(n - r)!, which in turn divides n! (with quotient equal to the binomial coefficient $\binom{n}{r}$).

We have confirmed the inductive step in both cases, and the desired conclusion follows.

5. [7+7=14 points] (a) Suppose that M is an algebraically closed field. Show that all polynomials in M[t] are separable.

Continued...

Cont...

Solution: Suppose that $f \in M[t]$ is irreducible and $\deg(f) > 1$. Then f is non-zero and non-constant and has a root $\alpha \in M$. Define $g \in M[t]$ by means of the relation $f = (t - \alpha)g$. Then g has degree $\deg(f) - 1 \ge 1$, and thus f is not irreducible over M[t], leading to a contradiction. Thus, every irreducible polynomial in M[t] has degree 1. Such a polynomial cannot have multiple roots, and so must be separable. Every polynomial in K[X] is therefore a product of separable polynomials, and must consequently itself be separable.

(b) Suppose that p is a prime number and t is an indeterminate, and let $L = \overline{\mathbb{F}}_p(t)$, where $\overline{\mathbb{F}}_p$ denotes the algebraic closure of \mathbb{F}_p . Are all polynomials in L[X] separable? Justify your answer.

Solution: No, not all polynomials in L[X] separable. Consider, for example, the polynomial $f = X^p - t \in L[X]$, and let $\alpha \in \overline{L}$ be a root of f. Thus, we have $\alpha^p = t$. We show first that f is irreducible over L. Since t is irreducible in $\overline{\mathbb{F}}_p[t]$, it follows from Eisenstein's criterion via Gauss's Lemma that f is irreducible over $\overline{\mathbb{F}}_p(t) = L$. Finally, to see that f is not separable over L, we use the fact that $\operatorname{char}(K) = p$ and p divides the binomial coefficients $\binom{p}{k}$ for $1 \leq k < p$. Hence $(X - \alpha)^p = X^p - t$. Thus α is the only root of f, even though f is irreducible over L with deg f = p > 1, and so f is not separable.

6. [8+8=16 points] Throughout, let f denote the polynomial $t^5 - 9t - 3 \in \mathbb{Q}[t]$, let L be a splitting field for f over \mathbb{Q} , and let M be a field with $\mathbb{Q} \subsetneq M \subsetneq L$ (that is, a field strictly intermediate between \mathbb{Q} and L).

(a) Show that, for any $\sigma \in \text{Gal}(L : \mathbb{Q})$, and for any $\alpha \in M$, the polynomial $\sigma(m_{\alpha}(\mathbb{Q}))$ is monic and irreducible over \mathbb{Q} . Here $m_{\alpha}(\mathbb{Q})$ denotes the minimal polynomial of α over \mathbb{Q} .

Solution: Suppose that $\alpha \in M$. Then $m_{\alpha}(\mathbb{Q})$ is monic and irreducible over \mathbb{Q} . Since σ is a homomorphism, we know that $\sigma(1) = 1$. Thus $\sigma(m_{\alpha}(\mathbb{Q}))$ is monic. Also, if $\sigma(m_{\alpha}(\mathbb{Q}))$ has a proper factorisation g_1g_2 , say, then $\sigma^{-1}(g_1) \cdot \sigma^{-1}(g_2)$ gives a factorisation of $m_{\alpha}(\mathbb{Q})$ over \mathbb{Q} , contradicting the irreducibility of $m_{\alpha}(\mathbb{Q})$. Thus $\sigma(m_{\alpha}(\mathbb{Q}))$ is indeed irreducible.

(b) Suppose that $M : \mathbb{Q}$ is normal and that f factors as a product of monic irreducibles f_1, \ldots, f_r (of positive degree) over M[t]. Show that $\deg(f_i) = \deg(f_1)$ for each i.

Solution: Let $\alpha \in L$ be a root of f_1 and $\beta \in L$ be a root of f_i . Since f_1 and f_i are monic and irreducible over M[t], we have $f_1 = m_{\alpha}(M)$ and $f_i = m_{\beta}(M)$. Also, since f is irreducible over \mathbb{Q} , there is some $\sigma \in \text{Gal}(L : \mathbb{Q})$ with $\sigma(\alpha) = \beta$. We have $0 = \sigma(f_1(\alpha)) = \sigma(f_1)(\beta)$. Since M : K is normal, it follows from Theorem 6.4 that $\sigma(M) \subseteq M$, so that $\sigma(f_1) \in M[t]$. Then $\sigma(f_1)$ is a monic polynomial divisible by $m_{\beta}(M) = f_i$. So $\deg(f_1) \ge \deg(f_i)$. Applying this argument with σ^{-1} in place of σ , we see that $\deg(f_i) \ge \deg(f_1)$. Consequently, we have $\deg(f_i) = \deg(f_1)$ for all i.

(c) Show that if $M : \mathbb{Q}$ is normal, then f remains irreducible over M.

Solution: Observe that $\deg(f) = 5$, and so the proposed factorisation implies that $r \deg(f_1) = 5$, whence $\deg(f_i) = 1$ for all *i*, or $\deg(f_1) = 5$ and r = 1. In the former case, the field *M* is equal to the splitting field *L* of *f* over \mathbb{Q} , contradicting that *M* is a proper intermediate field. In the latter case, we see that *f* remains irreducible over *M*.

End of examination.