
GALOIS THEORY: HOMEWORK 1

Due 6pm Wednesday 17th January 2024

1. Suppose that φ : K1 → K2 is a field isomorphism, and let f ∈ K1[t] be a polynomial
with deg(f) ≥ 1. Show that f is irreducible in K1[t] if and only if φ(f) is irreducible in
K2[t].

2. For each of the following pairs of polynomials f and g:
(i) find the quotient and remainder on dividing g by f ;
(ii) use the Euclidean Algorithm to find the highest common factor h of f and g;
(iii) find polynomials a and b with the property that h = af + bg.

(a) g = t3 + 2t2 − t+ 3, f = t+ 2 over F5;
(b) g = t7 − 4t6 + t3 − 4t+ 6, f = 2t3 − 2 over F7.

3. (a) Show that t3 + 3t+ 1 is irreducible in Q[t].
(b) Suppose that α is a root of t3 + 3t+ 1 in C. Express α−1 and (1 + α2)−1 as linear

combinations, with rational coefficients, of 1, α and α2.
(c) Is it possible to express (1+α)−1 as a linear combination, with rational coefficients,

of 1 and α? Justify your answer.

4. Let K be a field. Recall that the polynomial ring K[t] is a unique factorisation domain.
Recall also that a non-zero polynomial f ∈ K[t] is monic if its leading coefficient is 1,
meaning that f = tn + an−1t

n−1 + . . . + a0 for some an−1, . . . , a0 ∈ K. Show that K[t]
contains infinitely many monic, irreducible polynomials.
(Suggestion: First show that K[t] contains at least one monic, irreducible polynomial.
Then assume that K[t] contains only finitely many monic, irreducible polynomials, and
derive a contradiction. You might want to review Euclid’s proof that there are infinitely
many primes.)

5. (a) Show that the polynomial t2 + t+ 1 is irreducible in F2[t].
(b) Give a complete list of the coset representatives of the quotient ring F2[t]/(t

2+t+1).
(c) For each of the non-zero elements α of F2[t]/(t

2 + t+1), determine the least integer
n (if one exists) for which αn = 1.
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