
GALOIS THEORY: HOMEWORK 11

Due 6pm Wednesday 3rd April 2024

1. Suppose that L : M : K is an algebraic tower of fields. Prove that L : K
is separable if and only if L : M and M : K are both separable. [Hint: try
using the Primitive Element Theorem].

2. Suppose that E : K and F : K are finite extensions with K ⊆ E ⊆ L and
K ⊆ F ⊆ L, with L a field.
(a) Show that when E : K is separable, then so too is EF : F .
(b) Show that when E : K and F : K are both separable, then so too are

EF : K and E ∩ F : K.

3. Suppose that char(K) = p > 0 and that L : K is a totally inseparable
algebraic extension (thus, every element of L \K is inseparable). Show that
whenever α ∈ L, then there is a non-negative integer n and an element θ ∈ K
having the property that mα(K) = tp

n − θ.
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