
GALOIS THEORY: HOMEWORK 14

Not for assessment – solutions will be provided

1. (a) Show that f = t3 − 3t+ 1 is irreducible over Q.
(b) Show that whenever α is a root of f in a splitting field extension of Q,

then β = α2 − 2 is also a root of f .
(c) Let L be a splitting field for f over Q. Use your answer to part (b)

to show that [L : Q] = 3, and conclude that the Galois group of f is
isomorphic to A3

∼= C3.
(d) Show that there is no γ ∈ L such that γ ̸∈ Q and γ3 ∈ Q, and conclude

that L : Q is not a radical extension.
(e) By Cardano’s formula, the equation f = 0 is soluble by radicals. How

do you reconcile this observation with your answer to part (d)?

2. Is the polynomial t5 − 4t4 + 2 soluble by radicals over Q?

3. Is the polynomial t6 − 4t2 + 2 soluble by radicals over Q?

4. Let n be a positive integer and K a field with characteristic not dividing n.
Let L = K(ζ), where ζ is a primitive nth root of unity.
(a) Show that Gal(L : K) is isomorphic to a subgroup of the multiplicative

group (Z/nZ)×.
(b) Show that if n is prime and K = Q then either L = K or Gal(L : K) ∼=

(Z/nZ)×.
5. Let n be a positive integer. By Dirichlet’s theorem, there exists a prime

number p with p ≡ 1 (mod n).
(a) Let L = Q(e2πi/p). Show that Gal(L : Q) ∼= (Z/pZ)×.
(b) Show thatQ(e2πi/p) contains a subfieldM with the property that Gal(M :

Q) ∼= Cn.
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