
GALOIS THEORY: HOMEWORK 2

Due 6pm Wednesday 24th January 2024

1. Let L : K be a field extension, and suppose that θ ∈ L satisfies the property
that [K(θ) : K] = p, where p is a prime number. Let

α = c0 + c1θ + . . .+ cp−1θ
p−1,

for some c0, . . . , cp−1 ∈ K, and suppose that α ̸∈ K. By considering [K(α) :
K], show that K(α) = K(θ).

2. Let L : K be a field extension with K ⊆ L. Let A ⊆ L, and let

C = {C ⊆ A : C is a finite set}.
Show that K(A) = ∪C∈CK(C), and further that when [K(C) : K] < ∞ for
all C ∈ C, then K(A) : K is an algebraic extension.

3. Let L : K be a field extension, and suppose that γ ∈ L satisfies the property
that degmγ(K) = 5. Suppose that h ∈ K[t] is a non-zero cubic polynomial.
By noting that γ is a root of the cubic polynomial g(t) = h(t) − h(γ) ∈
K(h(γ))[t], show that [K(h(γ)) : K] = 5.

4. Calculate the minimal polynomial of
5
√

7 + 3
√
21 over Q, and hence determine

the degree of the field extension Q(
5
√

7 + 3
√
21) : Q.

5. Let Q(α) : Q be a simple field extension with the property that the minimal
polynomial of α is t3 + 2t − 2. Calculate the minimal polynomials of α − 1
and α2 + 1 over Q, and express the multiplicative inverses of these elements
in Q(α) in the form c0 + c1α + c2α

2 for suitable rational numbers c0, c1, c2.
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