
GALOIS THEORY: HOMEWORK 3

Due 6pm Wednesday 31st January 2024

1. (a) Show that when p is a prime number, then for every positive integer n the polynomial
Xn − p is irreducible over Q[X].
(b) By making the substitution y = X − 1, or otherwise, show that when p is a prime
number, the polynomial Xp−1 +Xp−2 + · · ·+X + 1 is irreducible over Q.

2. (a) Show that the polynomial φ = t3 − t+ 1 is irreducible over the ring I = F3[t].
(b) Let K = F3(t). Show that the polynomial X2024 +φX2 +φ is irreducible over K[X].

3. Let L : K be a field extension. Suppose that α ∈ L is algebraic over K and β ∈ L
is transcendental over K. Suppose also that α 6∈ K. Show that K(α, β) : K is not a
simple field extension.

4. (a) Show that the polynomial f(t) = t7 − 7t5 + 14t3 − 7t− 2 factorises over Q[t] in the
form f = g1g

2
3, where g1, g3 ∈ Z[t] have the property that g1 is linear, and g3 is cubic

and irreducible.
(b) Using the identity

cos 7θ = 64 cos7 θ − 112 cos5 θ + 56 cos3 θ − 7 cos θ,

together with the conclusion of part (a), show that the angle 2π/7 is not constructible
by ruler and compass. Hence deduce that the regular heptagon is not constructible by
ruler and compass.

5. Assume (as has in fact been proved) that π = 3.14159 . . . is transcendental over Q.
(a) Show that one cannot “square the circle” – that is, prove that

√
π is not constructible

by ruler and compass.
(b) Suppose that a generous benefactor has given you the points (0, 0), (0, 1) and (0, π)
in the plane. Can you now construct π1/5 by ruler and compass from these three points?
Explain your answer.
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