
GALOIS THEORY: HOMEWORK 7

Due 6pm Wednesday 28th February 2024

1. Suppose that K is an algebraic closure of K, and assume that K ⊆ K. Take α ∈ K
and suppose that σ : K → K is a homomorphism.
(a) Show that σ can be extended to a homomorphism τ : K → K.
(b) Prove that the number of distinct roots of mα(K) in K is equal to the number of
distinct roots of σ(mα(K)) in K.

2. Suppose that L : K is an algebraic extension of fields.
(a) Show that L is an algebraic closure of K, and hence L ' K.
(b) Suppose that K ⊆ L ⊆ L. Show that one may take K = L.

3. For each of the following polynomials, construct a splitting field L over Q and compute
the degree [L : Q].
(a) t3 − 1
(b) t7 − 1

4. For each of the following polynomials, construct a splitting field L over Q and compute
the degree [L : Q].
(a) t4 + t2 − 6
(b) t8 − 16

5. Suppose that L : K is a splitting field extension for the polynomial f ∈ K[t] \K.
(a) Prove that [L : K] ≤ (deg f)!.
(b) Prove that [L : K] divides (deg f)!.
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