
GALOIS THEORY: HOMEWORK 8

Due 6pm Wednesday 6th March 2024

1. Recall the splitting field L over Q that you constructed in question 4(b) of Problem
Sheet 7 for the polynomial t8 − 16. Determine the subgroup of S4 to which Gal(L : Q)
is isomorphic.

2. Suppose that K is a field and that L : K is a splitting field extension for an irreducible
polynomial f ∈ K[t] of degree n. Assume that K ⊆ L.
(a) Show that whenever α and β are roots of f in L, and σ is a K-automorphism of

L, then σ(α) = σ(β) if and only if α = β;
(b) Show that the elements of Gal(L : K) act as permutations on the n roots of f , and

hence deduce that Gal(L : K) has order dividing n!;
(c) Let g be a degree m polynomial in K[t], not necessarily irreducible, and let M : K

be a splitting field extension for g. Show that |Gal(M : K)| divides m!.

3. Suppose that L : K is a normal extension, and that K ⊆ L ⊆ K. Recall that since
L : K is algebraic, then any algebraic closure of K is an algebraic closure of L.
(a) Show that for any K-homomorphism τ : L→ K, one has τ(L) = L;
(b) Suppose that M is a field satisfying K ⊆ M ⊆ L. Show that L : M is a normal

extension.
4. Which of the following field extensions are normal? Justify your answers.
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5. Let K = F5(t). Find an algebraic field extension L : K which is not normal, and justify

your answer.
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