
GALOIS THEORY: SOLUTIONS TO HOMEWORK 1

1. Suppose that φ : K1 → K2 is a field isomorphism, and let f ∈ K1[t] be a polynomial
with deg(f) ≥ 1. Show that f is irreducible in K1[t] if and only if φ(f) is irreducible in
K2[t].

Solution: Suppose that f = gh, where g, h ∈ K1[t] are polynomials with deg(g) ≥ 1
and deg(h) ≥ 1. Since φ is a field homomorphism (and hence is injective) we have
φ(f) = φ(g)φ(h) with deg(φ(g)) = deg(g) and deg(φ(h)) = deg(h). Thus f is not
irreducible if and only if φ(f) is not irreducible, whence f is irreducible if and only if
φ(f) is irreducible.

2. For each of the following pairs of polynomials f and g:
(i) find the quotient and remainder on dividing g by f ;
(ii) use the Euclidean Algorithm to find the highest common factor h of f and g;
(iii) find polynomials a and b with the property that h = af + bg.

(a) g = t3 + 2t2 − t+ 3, f = t+ 2 over F5;
(b) g = t7 − 4t6 + t3 − 4t+ 6, f = 2t3 − 2 over F7.

Solution: (a)(i) The quotient is t2 − 1, and remainder 0.
(ii) We have g = (t2 − 1)f , so a highest common factor of f and g is f = t+ 2.
(iii) One has f = f + 0 · g, so one may take a = 1 and b = 0.

(b)(i) The quotient is 4t4 − 2t3 + 4t+ 2, and remainder 4t+ 3.
(ii) We apply the Euclidean algorithm, noting that g = (4t4 − 2t3 + 4t+ 2)f + (4t+ 3),
and then f = (4t2 + 4t+ 4)(4t+ 3). Then a highest common factor of f and g is 4t+ 3.
(iii) Running the Euclidean algorithm backwards, we find that

4t+ 3 = g − (4t4 − 2t3 + 4t+ 2)f,

so that one may take a = 3t4 + 2t3 + 3t+ 5 and b = 1.

3. (a) Show that t3 + 3t+ 1 is irreducible in Q[t].
(b) Suppose that α is a root of t3 + 3t+ 1 in C. Express α−1 and (1 + α2)−1 as linear

combinations, with rational coefficients, of 1, α and α2.
(c) Is it possible to express (1+α)−1 as a linear combination, with rational coefficients,

of 1 and α? Justify your answer.

Solution: (a) Suppose that the polynomial f(t) = t3 + 3t + 1 is reducible over Q[t].
Then f must possess a linear factor, and hence a rational root, and the latter may
be written in the form p/q with p ∈ Z, q ∈ N and p and q coprime. But then 0 =
q3f(p/q) = p3 + 3pq2 + q3, and we find that p|q and q|p. Thus p, q ∈ {+1,−1}, so that
p/q = ±1. The latter yields a contradiction, since f(1) = 5 and f(−1) = −3. We
consequently conclude that f is irreducible over Q[t].

(b) If α is a root of t3 + 3t+ 1 in C, then 0 = (α3 + 3α+ 1)/α = α2 + 3 + 1/α, whence
α−1 = −α2 − 3.

We must work harder to evaluate (1 +α2)−1. We apply the Euclidean algorithm with
t3 + 3t+ 1 and t2 + 1. Thus we have

t3 + 3t+ 1 = t(t2 + 1) + 2t+ 1

t2 + 1 = (1
2
t− 1

4
)(2t+ 1) + 5

4
,

1
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whence
5
4

= (t2 + 1)− (1
2
t− 1

4
)(2t+ 1)

= (t2 + 1)− (1
2
t− 1

4
)(t3 + 3t+ 1− t(t2 + 1))

= (1
2
t2 − 1

4
t+ 1)(t2 + 1)− (1

2
t− 1

4
)(t3 + 3t+ 1).

Since α3 + 3α + 1 = 0, we deduce that 5
4

= (1
2
α2 − 1

4
α + 1)(α2 + 1), whence

(1 + α2)−1 = 1
5
(2α2 − α + 4).

(c) No, it is not possible to express (1+α)−1 as a linear combination a+bα with a, b ∈ Q.
If (1 + α)−1 were such a linear combination, then one would have (1 + α)(a+ bα) = 1.
Since α is not rational, we have α2 = cα + d for some c, d ∈ Q. But then −3α − 1 =
α3 = cα2 + dα = (c2 + d)α + cd. Since α is not rational, we must have cd = −1 and
c2 +d = −3, whence 1/d2 +d = −3, which is to say that d ∈ Q satisfies d3 + 3d+ 1 = 0.
Since d ∈ Q, we again contradict that α is not rational.

4. Let K be a field. Recall that the polynomial ring K[t] is a unique factorisation domain.
Recall also that a non-zero polynomial f ∈ K[t] is monic if its leading coefficient is 1,
meaning that f = tn + an−1t

n−1 + . . . + a0 for some an−1, . . . , a0 ∈ K. Show that K[t]
contains infinitely many monic, irreducible polynomials.
(Suggestion: First show that K[t] contains at least one monic, irreducible polynomial.
Then assume that K[t] contains only finitely many monic, irreducible polynomials, and
derive a contradiction. You might want to review Euclid’s proof that there are infinitely
many primes.)

Solution: Note that t and t + 1 are both monic, irreducible elements of K[t], and so
such polynomials exist. Suppose that there are only finitely many monic, irreducible
elements of K[t]. Enumerate these polynomials as f1, . . . , fm, and let g = f1 · · · fm + 1.
It follows that deg g ≥ 1, whence g is not a unit and is not 0. Thus g factors essentially
uniquely as a product of irreducible elements of K[t], and since g is monic, these factors
may be taken to be monic. Hence, for some index j with 1 ≤ j ≤ m, we have fj|g. But
then fj divides g − f1 . . . fm, meaning that fj divides 1. This is impossible, since any
multiple of fj must have degree at least deg fj ≥ 1, and deg 1 = 0. We are forced to
conclude that K[t] must have infinitely many monic, irreducible polynomials.

5. (a) Show that the polynomial t2 + t+ 1 is irreducible in F2[t].
(b) Give a complete list of the coset representatives of the quotient ring F2[t]/(t

2+t+1).
(c) For each of the non-zero elements α of F2[t]/(t

2 + t+1), determine the least integer
n (if one exists) for which αn = 1.

Solution: (a) Since f = t2 + t + 1 has degree 2, if it is reducible then it must have a
root in F2, but f(0) = f(1) = 1, so this is not the case.

(b) The elements of F2[t]/(f) are the cosets h + (f), where h ∈ {at + b : a, b ∈ F2} =
{0, 1, t, t+ 1}.
(c) For α = 1+(f), clearly n = 1 works. For α = t+(f) we have α2 = t2+(f) = t+1+(f)
and α3 = t(t + 1) + (f) = 1 + (f), so n = 3 works. For α = t + 1 + (f) we have
α2 = t2 + 1 + (f) = t+ (f) and α3 = t(t+ 1) + (f) = 1 + (f), so again n = 3 works.
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