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1. Let f ∈ K[t]\K, and let L : K be a splitting field extension for f . Assume that K ⊆ L.
(a) Show that when f has a repeated root over L, then there exists α ∈ L for which

f(α) = 0 = (Df)(α).
Solution: The situation with f is reducible simplifies to the case that f is irre-
ducible, so we may suppose that f is irreducible with a repeated root α ∈ L. Then
f = (t−α)kg for some k > 1 and g ∈ L[t]. Hence Df = k(t−α)k−1g+ (t−α)kDg,
whence (Df)(α) = 0 and f(α) = 0.

(b) Show that when α ∈ L satisfies f(α) = 0 = (Df)(α), then there exists g ∈ K[t]
having the property that deg g ≥ 1 and g divides both f and Df .
Solution: Suppose that there exists α ∈ L such that f(α) = (Df)(α) = 0. Then
mα(K)|f and mα(K)|Df , and so the conclusion holds with g = mα(K).

(c) Show that when g ∈ K[t] \K divides both f and Df , then f has a repeated root
over L.
Solution: Suppose that there exists g ∈ K[t] such that deg g ≥ 1, having the
property that g|f and g|Df . One therefore has f = gh for some h ∈ K[t]. Since
f splits over L, then so does g. Let α be a root of g in L. Then f = (t− α)q, for
some q ∈ L[t], and hence Df = q + (t− α)Dq. But (t− α)|Df in L[t], since g|Df ,
and so (t− α)|q. Thus (t− α)2|f , and so f has a repeated root in L.

2. Suppose that char(K) = p > 0 and f is irreducible over K[t].
(a) Show that there is an irreducible and separable polynomial g ∈ K[t] and a non-

negative integer n with the property that f(t) = g(tp
n
).

Solution: Let n be the largest non-negative integer having the property that
f(t) ∈ K[tp

n
]. Thus, there exists a polynomial g ∈ K[t] having the property that

f(t) = g(tp
n
). It follows from Theorem 8.2 that if g is inseparable, then g ∈ K[tp],

which implies that f ∈ K[tp
n+1

], contradicting the maximality of n. It follows that
g is separable, and its irreducibility is an immediate consequence of that of f .

(b) Let L : K be a splitting field extension for f . Show that there exists a non-negative
integer n with the property that every root of f in L has multiplicity pn.
Solution: From part (a) we see that f(t) = g(tp

n
) for some non-negative integer n

and an irreducible separable polynomial g ∈ K[t]. Since g is separable, there exist
distinct roots β1, . . . , βd ∈ K having the property that g(t) = (t − β1) · · · (t − βd).
Hence f(t) = (tp

n −β1) · · · (tp
n −βd). Writing αi = β

1/pn

i ∈ K for 1 ≤ i ≤ d, we see
that the αi are distinct elements of K, and moreover a splitting field extension for
f is L : K, where L = K(α1, . . . , αd), since we have

f(t) = (t− α1)
pn · · · (t− αd)p

n

.

Thus every root of f in L has multiplicity pn for some non-negative integer n.
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