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1. Suppose that L : M : K is an algebraic tower of fields. Prove that L : K
is separable if and only if L : M and M : K are both separable. [Hint: try
using the Primitive Element Theorem].
Solution: We showed in Proposition 7.1 that when L : K is separable,
then so too is L : M . Meanwhile, the separability, in such circumstances,
of M : K is inherited from that of L : K. Conversely, suppose that L :
M and M : K are both separable, and suppose that α ∈ L. Then since
L : M is separable, one finds that α is separable over M . The polynomial
mα(M) has its coefficients defined in a subfield M ′ of M with M ′ : K a finite
separable extension. Since mα(M

′) = mα(M) is separable, we deduce that
α is separable over M ′. Thus, since M ′ : K is finite and separable, it follows
from the primitive element theorem that there exists β ∈ M ′ such that
M ′ = K(β), whence Theorem 7.4 implies that M ′(α) : K, or equivalently
K(α, β) : K, is separable. Consequently, we deduce that α ∈ K(α, β) is
separable over K. Since this conclusion holds for all α ∈ L, we conclude that
L : K is separable.

2. Suppose that E : K and F : K are finite extensions with K ⊆ E ⊆ L and
K ⊆ F ⊆ L, with L a field.
(a) Show that when E : K is separable, then so too is EF : F .

Solution: By the primitive element theorem, we may suppose that
E = K(α) for some α ∈ E separable over K. Thus EF = F (α). Since
α is separable over K, it is also separable over F , and hence it follows
from Theorem 7.4 that F (α) : F , or equivalently EF : F , is separable.

(b) Show that when E : K and F : K are both separable, then so too are
EF : K and E ∩ F : K.
Solution: When E : K and F : K are both separable, then EF : F is
separable, and hence EF : F : K is a tower of extensions with EF : F
and F : K both separable. Then it follows from problem 1 that EF : K
is separable. Likewise, one has the tower E : E ∩ F : K of extensions
with E : K separable. Then it follows from problem 1 that E ∩ F : K
is separable.

3. Suppose that char(K) = p > 0 and that L : K is a totally inseparable
algebraic extension (thus, every element of L \K is inseparable). Show that
whenever α ∈ L, then there is a non-negative integer n and an element θ ∈ K
having the property that mα(K) = tp

n − θ.
Solution: Suppose that α ∈ L. Then mα(K) is an irreducible polynomial
over K, so by question 4(a) has the shape g(tp

n
) for some non-negative

integer n and an irreducible separable polynomial g. Suppose that g has
degree 2 or more, and that its distinct roots in K are β1, . . . , βd. Then for
some index i one has βi = αpn and mβi

(K) = g(t), by the irreducibility of
1
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g. But then βi ∈ L is separable, because g is separable, contradicting the
totally inseparable property of the extension L : K. It follows that g must
have degree 1, and hence mα(K) = tp

n − θ, where θ = αpn ∈ K.
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